scholarly journals Influence of soil and hydraulic conditions on the processes of internal erosion, cavity formation and collapse behind coastal structures

2021 ◽  
Vol 170 ◽  
pp. 104013
Author(s):  
Kenta Kudai ◽  
Shinji Sassa ◽  
Soonbo Yang ◽  
Kouhei Takada
Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 169
Author(s):  
Xiukai Wang ◽  
Yao Tang ◽  
Bo Huang ◽  
Tiantian Hu ◽  
Daosheng Ling

Internal erosion can trigger severe engineering disasters, such as the failure of embankment dams and uneven settlement of buildings and sinkholes. This paper comprehensively reviewed the mechanisms of soil internal erosion studied by numerical simulation, which can facilitate uncovering the internal erosion mechanism by tracing the movement of particles. The initiation and development of internal erosion are jointly influenced by the geometric, mechanical, and hydraulic conditions, which determine the pore channels and force chains in soil. The geometric conditions are fundamental to erosion resistance, whereas the mechanical conditions can significantly change the soil erosion resistance, and the hydraulic conditions determine whether erosion occurs. The erosion process can be divided into particle detachment, transport, and clogging. The first is primarily affected by force chains, whereas the latter two are mostly affected by the pore channels. The stability of the soil is mainly determined by force chains and pore channels, whereas the hydraulic conditions act as external disturbances. The erosion process is accompanied by contact failure, force chain bending, kinetic energy burst of particles, and other processes due to multi-factor coupling.


Author(s):  
S. Wisutmethangoon ◽  
T. F. Kelly ◽  
J.E. Flinn

Vacancies are introduced into the crystal phase during quenching of rapid solidified materials. Cavity formation occurs because of the coalescence of the vacancies into a cluster. However, because of the high mobility of vacancies at high temperature, most of them will diffuse back into the liquid phase, and some will be lost to defects such as dislocations. Oxygen is known to stabilize cavities by decreasing the surface energy through a chemisorption process. These stabilized cavities, furthermore, act as effective nucleation sites for precipitates to form during aging. Four different types of powders with different oxygen contents were prepared by gas atomization processing. The atomized powders were then consolidated by hot extrusion at 900 °C with an extrusion ratio 10,5:1. After consolidation, specimens were heat treated at 1000 °C for 1 hr followed by water quenching. Finally, the specimens were aged at 600 °C for about 800 hrs. TEM samples were prepared from the gripends of tensile specimens of both unaged and aged alloys.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 161-166 ◽  
Author(s):  
Ivana Jancarkova ◽  
Tove A. Larsen ◽  
Willi Gujer

A project investigating the dynamics of self-purification processes in a shallow stream is carried out. Effects of the concentration gradient due to the distance to the pollution source, of hydraulic conditions in the river bed and of storm floods on the distribution of nitrifying bacteria were studied with the help of laboratory and field experiments. Nitrifiers density on the surface of the stream bed increased rapidly up to a distance of 300 m from the WWTP indicating possible competition of the nitrifiers with the heterotrophic bacteria close to the WWTP. Afterwards a slight decrease in the downstream direction was observed. In vertical profiles, higher bacterial densities were found at sites with rapid infiltration of channel water to the stream bed than at sites with no exchange between channel water and stream bed water or where stream bed water exfiltrated. A major flood event scoured the nitrifiers nearly totally from the surface of the river bed. Major floods belong so to the most dominant processes controlling self-purification in shallow streams. Minor floods, however, don't scour bacteria in the depth of the stream bed that could then be important for the self-purification processes.


Sign in / Sign up

Export Citation Format

Share Document