Comparison on failure behavior of three-dimensional woven carbon/carbon composites joints subjected to out-of-plane loading at room and high temperature

2020 ◽  
pp. 100567
Author(s):  
Yanfeng Zhang ◽  
Zhengong Zhou ◽  
Shidong Pan ◽  
Zhiyong Tan
2014 ◽  
Vol 620 ◽  
pp. 429-432
Author(s):  
Xiao Hong Zhou ◽  
Dong Hua Zhang ◽  
Long Wei Zhou

The failure of an adhesive-bonded and bolted composite joint under axial tensile loading is investigated. A progressive damage model consisting of a three dimensional FEM accompanying with a three dimensional maximum stress failure criterion and corresponding material degradation model is established to predict the failure behavior of the joint. The predicted failure load and load-displacement curve are validated by the experimental results is obtained. Moreover, the result shows that the discontinuity between two L-shaped laminates is the weak spot and required to be strengthened.


2021 ◽  
pp. 002199832110092
Author(s):  
Daniel A Drake ◽  
Rani W Sullivan ◽  
Andrew E Lovejoy ◽  
Stephen B Clay ◽  
Dawn C Jegley

Fiber-reinforced polymer composites are widely used in the aerospace industry due to their high stiffness and strength-to-weight ratios. However, their applicability can be limited by their relatively low interlaminar properties when compared to metallic alternatives. Through-thickness reinforcement approaches, such as stitching, z-pinning, needling, tufting, and three-dimensional weaving, have been developed in recent decades to enhance the interlaminar properties of composites. Stitching is considered to be an efficient and cost-effective method to reinforce composites in the through-thickness direction. Additionally, stitch parameters (stitch density, linear thread density, thread material, pretension, etc.) highly influence the in-plane and out-of-plane properties. This paper summarizes results from over one hundred papers on the influence of stitch parameters on fracture energy, interlaminar strength, and impact characteristics of stitched composite laminates, sandwich composites, and high-temperature composites. Much of the research on the influence of stitch parameters has focused on thermoset polymer matrix composites (PMCs), while fewer studies have investigated the impact of stitch parameters on high temperature or sandwich composites. Modification of existing and new test methods have been developed to adequately measure the effectiveness of stitching on the out-of-plane behavior of PMC panels. Results demonstrate that out-of-plane properties of PMCs are highly dependent on stitch parameters and can be enhanced by through-thickness stitching.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 772-776 ◽  
Author(s):  
Jiayi Liu ◽  
Junmeng Zhou ◽  
Yu Wang ◽  
Jie Mei ◽  
Jialin Liu

Nanoscale ◽  
2021 ◽  
Author(s):  
Pei Liu ◽  
Ece Arslan Imran ◽  
Annick De Backer ◽  
Annelies de Wael ◽  
Ivan Lobato ◽  
...  

Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well...


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 758-759
Author(s):  
Bao-liu Li ◽  
Jian-guang Guo ◽  
Bing Xu ◽  
Hui-tao Xu ◽  
Zhi-jun Dong ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


Sign in / Sign up

Export Citation Format

Share Document