Influence of stitching on the out-of-plane behavior of composite materials – A mechanistic review

2021 ◽  
pp. 002199832110092
Author(s):  
Daniel A Drake ◽  
Rani W Sullivan ◽  
Andrew E Lovejoy ◽  
Stephen B Clay ◽  
Dawn C Jegley

Fiber-reinforced polymer composites are widely used in the aerospace industry due to their high stiffness and strength-to-weight ratios. However, their applicability can be limited by their relatively low interlaminar properties when compared to metallic alternatives. Through-thickness reinforcement approaches, such as stitching, z-pinning, needling, tufting, and three-dimensional weaving, have been developed in recent decades to enhance the interlaminar properties of composites. Stitching is considered to be an efficient and cost-effective method to reinforce composites in the through-thickness direction. Additionally, stitch parameters (stitch density, linear thread density, thread material, pretension, etc.) highly influence the in-plane and out-of-plane properties. This paper summarizes results from over one hundred papers on the influence of stitch parameters on fracture energy, interlaminar strength, and impact characteristics of stitched composite laminates, sandwich composites, and high-temperature composites. Much of the research on the influence of stitch parameters has focused on thermoset polymer matrix composites (PMCs), while fewer studies have investigated the impact of stitch parameters on high temperature or sandwich composites. Modification of existing and new test methods have been developed to adequately measure the effectiveness of stitching on the out-of-plane behavior of PMC panels. Results demonstrate that out-of-plane properties of PMCs are highly dependent on stitch parameters and can be enhanced by through-thickness stitching.

2018 ◽  
Vol 8 (12) ◽  
pp. 2406 ◽  
Author(s):  
Hamed Saghafi ◽  
Mohamad Fotouhi ◽  
Giangiacomo Minak

This paper reviews recent works on the application of nanofibers and nanoparticle reinforcements to enhance the interlaminar fracture toughness, to reduce the impact induced damage and to improve the compression after impact performance of fiber reinforced composites with brittle thermosetting resins. The nanofibers have been mainly used as mats embedded between plies of laminated composites, whereas the nanoparticles have been used in 0D, 1D, 2D, and 3D dimensional patterns to reinforce the matrix and consequently the composite. The reinforcement mechanisms are presented, and a comparison is done between the different papers in the literature. This review shows that in order to have an efficient reinforcement effect, careful consideration is required in the manufacturing, materials selection and reinforcement content and percentage. The selection of the right parameters can provide a tough and impact resistant composite with cost effective reinforcements.


2019 ◽  
Vol 9 (11) ◽  
pp. 2372 ◽  
Author(s):  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Francesco Di Caprio ◽  
Aniello Riccio ◽  
Angela Russo ◽  
...  

Composite laminates are characterized by high mechanical in-plane properties and poor out-of-plane characteristics. This issue becomes even more relevant when dealing with impact phenomena occurring in the transverse direction. In aeronautics, Low Velocity Impacts (LVIs) may occur during the service life of the aircraft. LVI may produce damage inside the laminate, which are not easily detectable and can seriously degrade the mechanical properties of the structure. In this paper, a numerical-experimental investigation is carried out, in order to study the mechanical behavior of rectangular laminated specimens subjected to low velocity impacts. The numerical model that best represents the impact phenomenon has been chosen by numerical–analytical investigations. A user defined material model (VUMAT) has been developed in Abaqus/Explicit environment to simulate the composite intra-laminar damage behavior in solid elements. The analyses results were compared to experimental test data on a laminated specimen, performed according to ASTM D7136 standard, in order to verify the robustness of the adopted numerical model and the influence of modeling parameters on the accuracy of numerical results.


Author(s):  
Laura Ferrero ◽  
Ugo Icardi

In this paper, multiple cores sandwich composites undergoing impact loads are optimized in order to improve their resistance to the impact-induced delamination. This peculiar type of composites is characterized by one internal face splitting the core in two parts. Owing to their architecture with an intermediate and two external faces, their additional tailoring capability offers potential advantages in terms of energy absorption capability and damage tolerance behavior over conventional sandwich composites. Obviously, an accurate assessment of the interfacial stress fields, of their damage accumulation mechanisms and of their post-failure behavior are fundamental to fully exploit their potential advantages. Despite it is evident that structural models able to accurately describe the local behavior are needed to accomplish this task, the analysis is commonly still carried out using simplified sandwich models which postulate the overall variation of displacements and stresses across the thickness, because more detailed models could make the computational effort prohibitively large. No attempt is here made to review the ample literature about the sandwich composite models, since a plenty of comprehensive bibliographical review papers and monographs are available in the specialized literature. Likewise, no attempt is made for reviewing the methods used to model the damage. It is just remarked that the models to date available range from detailed models which discretize the real structure of the core, to FEM models by brick elements, to discrete-layer models and to sublaminate models. In these paper, two different models are used, to achieve a compromise between accuracy and limitation of costs. The time history of the contact force is computed by a C° eight-node plate element based on a 3D zig-zag model, in order to achieve the best accuracy using a plate model with the customary five functional d.o.f. This model is also used in the optimization process, since it is mathematically easily treatable and accurately describes the strain energy. In addition, it enables a comparison with the classical plate models, since they can be particularized from it. The counterpart plate element of this zig-zag model, which is obtained from a standard C° plate element through a strain energy updating (which successfully described the impact induced damage as shown by the comparison with the damage detected by c-scanning in a previous paper), is used for computing the contact force time history, to reach a good compromise between accuracy and computational costs. A mixed brick element with the three displacements and the three interlaminar stresses as nodal d.o.f. is used to compute the damage at each time step. The onset of damage is predicted in terms of matrix and fibers failure, cracks, delamination, rippling, wrinkling and face damping using different stress-based criteria. In this paper the effects of the accumulated damage are accounted for through the ply-discount theory, i.e. using reduced elastic properties for the layers and the cores that failed, although it is known that some cases exist for which this material degradation model could be unable to describe the real loss of load carrying capacity. The optimization technique recently proposed by the authors is used in this paper for optimizing the energy absorption properties of multi-core sandwiches undergoing impact loads. The effect of this technique is to act as an energy absorption tuning, since it minimizes or maximizes the amount of energy absorbed by specific modes through a suited in-plane variation of the plate stiffness properties (e.g., bending, in-plane and out-of-plane shears and membrane energies). The appropriate in-plane variable distributions of stiffness properties, making certain strain energy contributions of interest extremal, are found solving the Euler-Lagrange equations resulting from assumption of the laminate stiffness properties as the master field and setting to zero the first variation of wanted and unwanted strain energy contributions (e.g., bending, in-plane and out-of-plane shears and membrane energies). Our purpose is to minimize the energy absorbed through unwanted modes (i.e., involving interlaminar strengths) and maximize that absorbed through desired modes (i.e., involving membrane strengths). The final result is a ply with variable stiffness coefficient over its plane which is able to consistently reduce the through-the-thickness interlaminar stress concentrations, with beneficial effects on the delamination strength. All the solutions proposed can be obtained either varying the orientation of the reinforcement fibers, the fiber volume rate or the constituent materials by currently available manufacturing processes. The coefficients of the involved stiffness terms are computed enforcing conditions which range from the thermodynamic constraints, to imposition of the mean stiffness, to the choice of a convex or a concave shape (in order to minimize or maximize the energy contributions of interest). Two solutions of technical interest will be proposed, which both are based on a parabolic distribution of stiffness coefficients. The former reduces the bending of a lamina with moderately increasing the shear stresses, the second one reduces these stresses with a low increment in the bending contribution. The effects of the incorporation of these layers (with the same mean properties of the layers they replace) is shown hereafter.


2018 ◽  
Vol 52 (25) ◽  
pp. 3429-3444 ◽  
Author(s):  
Ezequiel Buenrostro ◽  
Daniel Whisler

Three-dimensional fiber-reinforced foam cores may have improved mechanical properties under specific strain rates and fiber volumes. But its performance as a core in a composite sandwich structure has not been fully investigated. This study explored different manufacturing techniques for the three-dimensional fiber-reinforced foam core using existing literature as a guideline to provide a proof of concept for a low-cost and easily repeatable method comprised of readily available materials. The mechanical properties of the fiber-reinforced foam were determined using a three-point bend test and compared to unreinforced polyurethane foam. The foam was then used in a sandwich panel and subjected to dynamic loading by means of a gas gun (103 s−1). High-strain impact tests validated previously published studies by showing, qualitatively and quantitatively, an 18–20% reduction in the maximum force experienced by the fiber-reinforced core and its ability to dissipate the impact force in the foam core sandwich panel. The results show potential for this cost-effective manufacturing method to produce an improved composite foam core sandwich panel for applications where high-velocity impacts are probable. This has the potential to reduce manufacturing and operating costs while improving performance.


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


2003 ◽  
Vol 70 (3) ◽  
pp. 381-390 ◽  
Author(s):  
F. Auricchio ◽  
E. Sacco

In the present work, new mixed variational formulations for a first-order shear deformation laminate theory are proposed. The out-of-plane stresses are considered as primary variables of the problem. In particular, the shear stress profile is represented either by independent piecewise quadratic functions in the thickness or by satisfying the three-dimensional equilibrium equations written in terms of midplane strains and curvatures. The developed formulations are characterized by several advantages: They do not require the use of shear correction factors as well as the out-of-plane shear stresses can be derived without post-processing procedures. Some numerical applications are presented in order to verify the effectiveness of the proposed formulations. In particular, analytical solutions obtained using the developed models are compared with the exact three-dimensional solution, with other classical laminate analytical solutions and with finite element results. Finally, we note that the proposed formulations may represent a rational base for the development of effective finite elements for composite laminates.


2015 ◽  
Vol 42 (11) ◽  
pp. 872-880 ◽  
Author(s):  
Jeong Hyuk Im ◽  
Y. Richard Kim

With an increasing emphasis on pavement preservation treatments due to economic concerns over the high costs of paving materials, one of the most cost-effective pavement preservation treatments, chip seals, now constitutes a significant proportion of the pavement preservation treatments used in the North Carolina highway network. To mitigate a major problem with chip seals, i.e., the loose aggregate particles, fog seals, which are composed of an emulsified product placed on top of the chip seal, can be used to help control the loose aggregate. For this study, fog seals were applied on top of newly fabricated chip. The surface texture of the fog-sealed chip seals was analyzed using the British pendulum test and a three-dimensional laser. Also, fog seal field test methods that were developed to suggest appropriate traffic opening times after fog seal construction were verified. The main findings presented in this paper are that: (i) the use of polymer-modified emulsions improves fog seal performance in terms of better aggregate retention and bleeding resistance; (ii) the skid resistance problems are not evident once the fog seal is applied on the recommended chip seal type; (iii) the relationship between skid number and mean profile depth can be determined based on three trends that are dependent on traffic loadings, and (iv) although the fog seal field tests were unable to be completed due to safety concerns, it can nonetheless be recommended that approximately 60 min after fog seal construction is an appropriate traffic opening time.


2022 ◽  
pp. 1-24
Author(s):  
G. Corrado ◽  
A. Arteiro ◽  
A.T. Marques ◽  
J. Reinoso ◽  
F. Daoud ◽  
...  

Abstract This paper presents the extension and validation of omni-failure envelopes for first-ply failure (FPF) and last-ply failure (LPF) analysis of advanced composite materials under general three-dimensional (3D) stress states. Phenomenological failure criteria based on invariant structural tensors are implemented to address failure events in multidirectional laminates using the “omni strain failure envelope” concept. This concept enables the generation of safe predictions of FPF and LPF of composite laminates, providing reliable and fast laminate failure indications that can be particularly useful as a design tool for conceptual and preliminary design of composite structures. The proposed extended omni strain failure envelopes allow not only identification of the controlling plies for FPF and LPF, but also of the controlling failure modes. FPF/LPF surfaces for general 3D stress states can be obtained using only the material properties extracted from the unidirectional (UD) material, and can predict membrane FPF or LPF of any laminate independently of lay-up, while considering the effect of out-of-plane stresses. The predictions of the LPF envelopes and surfaces are compared with experimental data on multidirectional laminates from the first and second World-Wide Failure Exercise (WWFE), showing a satisfactory agreement and validating the conservative character of omni-failure envelopes also in the presence of high levels of triaxiality.


Author(s):  
Xiang Fang ◽  
Haitao Wang ◽  
Xingtuan Yang ◽  
Suyuan Yu

In high temperature gas-cooled reactors (HTRs), graphite is used as the main structure material. The side reflecter of the reactor core is composed by a pile of graphite bricks. In real operational condition of the reactor, both high temperature and fast neutron irradiation have great effect on the behavior of graphite components. The non-uniform distribution of temperature and neutron dose cause obvious stress accumulation, which greatly affects the security and reliability of the graphite components. In addition, high temperature and neutron irradiation make the properties of graphite change in evidence, and the changes are not linear. Such changes must be considered and simulated in the calculation, in order to predict the stress concentration condition and the reliability of the graphite brick correctly. A FORTRAN code based on user subroutines of MSC.MARC is developed in INET in order to perform three-dimensional finite element analysis of irradiated behavior of the graphite components for the HTRs. In this paper, the stress level and failure probability of graphite components are calculated and obtained under different in-core temperatures and neutron dose levels of the core side of brick. 400°C, 500°C, 600°C and 700°C are selected as the core side temperature, while the range of neutron dose is 0 to 1022n cm-2 (EDN). Different constitutive laws are used in stress analysis procedure. The impact of different temperature and neutron dose levels are discussed.


Sign in / Sign up

Export Citation Format

Share Document