Effective treatment of simulated ASP flooding produced water by modified perlite

Author(s):  
Shuai Li ◽  
Dejun Sun ◽  
Shiying Wang ◽  
Tao Wu ◽  
Yujiang Li
Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Wei Zhang ◽  
Cheng Fu ◽  
Ying Wang ◽  
...  

The issue of pipeline scaling and oil-water separation caused by treating produced water in Alkali/Surfactant/Polymer (ASP) flooding greatly limits the wide use of ASP flooding technology. Therefore, this study of the demulsification-flocculation mechanism of oil-water emulsion in ASP flooding produced water is of great importance for ASP produced water treatment and its application. In this paper, the demulsification-flocculation mechanism of produced water is studied by simulating the changes in oil-water interfacial tension, Zeta potential and the size of oil droplets of produced water with an added demulsifier or flocculent by laboratory experiments. The results show that the demulsifier molecules can be adsorbed onto the oil droplets and replace the surfactant absorbed on the surface of oil droplets, reducing interfacial tension and weakening interfacial film strength, resulting in decreased stability of the oil droplets. The demulsifier can also neutralize the negative charge on the surface of oil droplets and reduce the electrostatic repulsion between them which will be beneficial for the accumulation of oil droplets. The flocculent after demulsification of oil droplets by charge neutralization, adsorption bridging, and sweeping all functions together. Thus, the oil droplets form aggregates and the synthetic action by the demulsifier and the flocculent causes the oil drop film to break up and oil droplet coalescence occurs to separate oil water.


RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15124-15131 ◽  
Author(s):  
Hao Sun ◽  
Xin He ◽  
Qian Tang ◽  
Xiaobing Li

A recyclable functional microsphere was developed which significantly enhances oil–water separation and decreases chemical demulsifier consumption.


2014 ◽  
Author(s):  
Yang Liu ◽  
Zhihua Wang ◽  
Xianli Li ◽  
Xinpeng Le ◽  
Xiaotong Wang

2002 ◽  
Vol 211 (2-3) ◽  
pp. 275-284 ◽  
Author(s):  
Shubo Deng ◽  
Renbi Bai ◽  
J.Paul Chen ◽  
Gang Yu ◽  
Zhanpeng Jiang ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 1-7
Author(s):  
Zhang D

The basic properties of alkali‒surfactant‒polymer (ASP) flooding produced water and effect of oil displacing agent on the stability of flooding produced water were obtained, through measuring and analysing water quality, oil content-settling time relationship and oil displacing agent-oil droplet size relationship of Zhong-106, Zhong-312, Zhong-417, Nan 4-8 and Bei 2-7 flooding produced water from Daqing Oilfield. The addition of ternary oil displacement agent to ASP flooding produced water greatly increases the difficulty of oil-water separation, and higher the concentration, worse the separation effect after standing. The effects of alkali, surfactant, and polymer on oil-water stability in simulated ASP flooding produced water were studied respectively. The ASP flooding produced water after 48 hours of settling formed a trace amount of nano-oil droplets, also accompanied by the accumulation and separation of a part of the oil droplets.


Sign in / Sign up

Export Citation Format

Share Document