Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration

2014 ◽  
Vol 114 ◽  
pp. 20-27 ◽  
Author(s):  
Jinfeng Dou ◽  
Haiqun Zhang ◽  
Xiuju Liu ◽  
Mengyu Zhang ◽  
Guangxi Zhai
2016 ◽  
Vol 141 ◽  
pp. 345-354 ◽  
Author(s):  
Yuwei Duan ◽  
Baomei Zhang ◽  
Lianjun Chu ◽  
Henry HY Tong ◽  
Weidong Liu ◽  
...  

2012 ◽  
Vol 110 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Béatrice Gleize ◽  
Franck Tourniaire ◽  
Laurence Depezay ◽  
Romain Bott ◽  
Marion Nowicki ◽  
...  

The xanthophylls lutein and zeaxanthin probably play a role in visual function and may participate in the prevention of age-related eye diseases. Although a minimum amount of TAG is required for an optimal bioavailability of these carotenoids, the effect of the type of TAG fatty acids (FA) is less clear. The aim was to assess the effect of the type of TAG FA on bioavailability of these xanthophylls. A total of three complementary models were used: an in vitro digestion model to study bioaccessibility, Caco-2 cells to study uptake efficiency and orally administered rats to study in vivo bioavailability. Results showed that lutein and zeaxanthin bioaccessibility was greater (about 20–30 %, P< 0·05) with butter and palm oil than with olive and fish oils. Mixed micelle size, which was significantly lower (about 8 %, P< 0·05) with SFA than with unsaturated FA, was inversely related to lutein and zeaxanthin bioaccessibility. There was no significant effect of the type of TAG FA on xanthophyll uptake by Caco-2 cells, but some compounds present in natural oils significantly affected xanthophyll uptake. Oral administration of rats with spinach and butter over 3 d led to a higher fasting plasma lutein concentration than oral administration with olive or fish oils. In conclusion, dietary fats rich in SFA lead to a higher bioavailability of lutein and zeaxanthin, as compared with fats rich in MUFA and PUFA. This is due partly to the higher bioaccessibility of these xanthophylls in the smaller mixed micelles produced when SFA are incorporated into mixed micelles.


2018 ◽  
Vol 15 (4) ◽  
pp. 564-575 ◽  
Author(s):  
Arehalli S. Manjappa ◽  
Popat S. Kumbhar ◽  
Prajakta S. Khopade ◽  
Ajit B. Patil ◽  
John I. Disouza

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 1510-1523
Author(s):  
Ying Wang ◽  
Mimi Guo ◽  
Dingmei Lin ◽  
Dajun Liang ◽  
Ling Zhao ◽  
...  

2014 ◽  
Vol 9 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Le Sun ◽  
Weixiang Zhang ◽  
Xiaohong Liu ◽  
Jin Sun

2018 ◽  
Vol 296 (12) ◽  
pp. 1971-1981 ◽  
Author(s):  
Popat S. Kumbhar ◽  
Swapnil Birange ◽  
Mahesh Atavale ◽  
John I. Disouza ◽  
Arehalli S. Manjappa
Keyword(s):  

2009 ◽  
Vol 20 (11) ◽  
pp. 1587-1596 ◽  
Author(s):  
Dongqing Luo ◽  
Jianhua Guo ◽  
Fengjie Wang ◽  
Jing Sun ◽  
Guangwu Li ◽  
...  

2021 ◽  
Vol 98 (5) ◽  
pp. 548-557
Author(s):  
E. A. Jain ◽  
D. Pleimes ◽  
A. A. Globenko

Introduction. The antiviral properties of imidazolyl ethanamide pentandioic acid (IPA), the active compound of the drug product, has been proven in various experimental models. However, the literature data on the toxicological properties of IPA are limited.Purpose. To evaluate mutagenic and genotoxic properties in in vitro and in vivo models, as well as to study the toxicity of IPA following chronic oral administration to rats and dogs.Materials and methods. Mutagenic and genotoxic properties of IPA were assessed using the Ames test, the test of chromosomal aberrations in human lymphocytes, and the micronucleus test in rats. The chronic toxicity of IPA was studied in Sprague Dawley rats and beagle dogs of both sexes, to which IPA was administered orally at doses of 30-300 mg/kg/day for 26 and 39 weeks, respectively.Results and discussion. In the Ames test, the addition of IPA up to the maximum dose (5000 mcg/plate) did not result in the increase in the number of revertant colonies. At a concentration of up to 5000 mcg/ml, IPA did not cause chromosomal aberrations in human leukocytes. At doses doses ≤ 2000 mg/kg, IPA did not increase the amount of micronuclei in the bone marrow of rats. In chronic experiments, animals tolerated the administration of IPA well: the dose without an observed effect (NOEL) for rats and dogs was 300 mg/kg/day.Conclusion. IPA did not show mutagenic and genotoxic properties in standard in vitro and in vivo tests. With chronic oral administration to rats and dogs, NOEL IPA equal to 300 mg/kg/day provided a systemic exposure that was 8-10 and 41-65 times higher than that in humans, respectively. The results obtained allow us to consider the safety profile of the prolonged use in humans as favorable.


2021 ◽  
Vol 62 (2) ◽  
pp. 144-162
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Introduction: The drawbacks assosiated with oral administration of drugscan be controlled or minimized by gastro retentive formulations that remain buoyant within the stomach for an extended time by providing prolonged gastric retention and releasethe drug in an exceedingly extended manner thereby improving bioavailability. The current research was to develop and optimize Domperidone and Famotidine floating tablets with extended release by Quality by Design approach. Method: Based on QTPP (Quality Target Product Profile), CQAs (Critical Quality Attributes)wereidentified. Risk analysis by the evaluation of formulation and process parameters showed that optimizing the levels of polymers could reduce high risk to achieve the target profile. A 23factor experimental design with midpoints was selected for statistical analysis and optimization. Results: HPMC K100 and Carbopol 934P had a positive effect while ethyl cellulose demonstrated a negative effect on the selected responses. Drug release kinetics followed the first-order release with Higuchi diffusion and Fickian diffusion. Optimized formula satisfying all the required parameters was selected and evaluated. The predicted response values were in close agreement with experimental response values. Abdominal X-ray imaging after oral administration of the tablets on a healthy rabbit’s stomach confirmed the extended floating behavior with shorter lag time. In vivo, pharmacokinetic studies in rabbits revealed that the optimized formulation exhibited prolonged drug release with enhanced Cmax, tmax, AUCo-t, and t1/2 of an optimized product when compared to the marketed product. Conclusions: It has been concluded that the application of Quality by Design in the formulation and optimization reduced the number of trials to produce a cost-effective formula.


Sign in / Sign up

Export Citation Format

Share Document