Formation energies of θ-Al2Cu phase and precursor Al-Cu compounds: Importance of on-site Coulomb repulsion

2021 ◽  
Vol 194 ◽  
pp. 110461
Author(s):  
M. Souissi ◽  
C.M. Fang ◽  
R. Sahara ◽  
Z. Fan

Author(s):  
P. Fraundorf ◽  
J. Tentschert

Since the discovery of their etchability in the early 1960‘s, nuclear particle tracks in insulators have had a diverse and exciting history of application to problems ranging from the selective filtration of cancer cells from blood to the detection of 244Pu in the early solar system. Their usefulness stems from the fact that they are comprised of a very thin (e.g. 20-40Å) damage core which etches more rapidly than does the bulk material. In fact, because in many insulators tracks are subject to radiolysis damage (beam annealing) in the transmission electron microscope, the body of knowledge concerning etched tracks far outweighs that associated with latent (unetched) tracks in the transmission electron microscope.With the development of scanned probe microscopies with lateral resolutions on the near atomic scale, a closer look at the structure of unetched nuclear particle tracks, particularly at their point of interface with solid surfaces, is now warranted and we think possible. The ion explosion spike model of track formation, described loosely, suggests that a burst of ionization along the path of a charged particle in an insulator creates an electrostatically unstable array of adjacent ions which eject one another by Coulomb repulsion from substitutional into interstitial sites. Regardless of the mechanism, the ejection process which acts to displace atoms along the track core seems likely to operate at track entry and exit surfaces, with the added feature of mass loss at those surfaces as well. In other words, we predict pits whose size is comparable to the track core width.



Author(s):  
Jordan Maxwell ◽  
Andrew Harris ◽  
Hanspeter Schaub


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Wenzheng Chen ◽  
Wenlong Zhang ◽  
Dongyan Ding ◽  
Daihong Xiao

Microstructural optimization of Al-Li alloys plays a key role in the adjustment of mechanical properties as well as corrosion behavior. In this work, Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloy was homogenized at different temperatures and holding times, followed by aging treatment. The microstructure and composition of the homogenized alloys and aged alloys were investigated. There were Al7Cu4Li phase, Al3Li phase, and Al2CuLi phases in the homogenized alloys. The Al7Cu4Li phase was dissolved with an increase in homogenization temperature and holding time. Al2Cu phase and Al2CuLi phase coarsened during the homogenization process. The alloy homogenized at 515 °C for 20 h was subjected to a two-stage aging treatment. Peak-age alloy, which had gone through age treatment at 120 °C for 4 h and 180 °C for 6 h, was mainly composed of α-Al, Al20Cu2Mn3, Al2CuLi, Al2Cu, and Al3Li phases. Tafel polarization of the peak-age alloys revealed the corrosion potential and corrosion current density to be −779 mV and 2.979 μA/cm2, respectively. The over-age alloy had a more positive corrosion potential of −658 mV but presented a higher corrosion current of 6.929 μA/cm2.



2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Andreas Sinner ◽  
Yurii E. Lozovik ◽  
Klaus Ziegler


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Trott ◽  
Chris A. Hooley

AbstractThe transition metal dichalcogenides offer significant promise for the tunable realisation and application of correlated electronic phases. However, tuning their properties requires an understanding of the physical mechanisms underlying their experimentally observed ordered phases, and in particular the extent to which lattice vibrations are a necessary ingredient. Here we present a potential mechanism for charge-density-wave formation in monolayers of vanadium diselenide in which the key role at low energies is played by a combination of electron–electron interactions and nesting. There is a competition between superconducting and density-wave fluctuations as sections of the Fermi surface are tuned to perfect nesting. This competition leads to charge-density-wave order when the effective Heisenberg exchange interaction is comparable to the effective Coulomb repulsion. When all effective interactions are purely repulsive, it results instead in d-wave superconductivity. We discuss the possible role of lattice vibrations in enhancing the effective Heisenberg exchange during the earlier stages of the renormalisation group flow.



Author(s):  
Jaewoong Hur

Random configurations and formation energies of a-MxSi1−yCy frameworks at x = 3.0 of Li and x = 0.5 of Na contents.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.



2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Lipeng Zhang ◽  
Isaac Bredeson ◽  
Axiel Y. Birenbaum ◽  
P. R. C. Kent ◽  
Valentino R. Cooper ◽  
...  


1993 ◽  
Vol 66 (12) ◽  
pp. 3648-3651 ◽  
Author(s):  
Kenji Waizumi ◽  
Hideki Masuda ◽  
Hisahiko Einaga ◽  
Nobuhiro Fukushima


Sign in / Sign up

Export Citation Format

Share Document