Detection of leek white tip disease under field conditions using hyperspectral proximal sensing and supervised machine learning

2021 ◽  
Vol 190 ◽  
pp. 106453
Author(s):  
S. Appeltans ◽  
J.G. Pieters ◽  
A.M. Mouazen
2021 ◽  
Vol 13 (7) ◽  
pp. 1341
Author(s):  
Simon Appeltans ◽  
Jan G. Pieters ◽  
Abdul M. Mouazen

Rust disease is an important problem for leek cultivation worldwide. It reduces market value and in extreme cases destroys the entire harvest. Farmers have to resort to periodical full-field fungicide applications to prevent the spread of disease, once every 1 to 5 weeks, depending on the cultivar and weather conditions. This implies an economic cost for the farmer and an environmental cost for society. Hyperspectral sensors have been extensively used to address this issue in research, but their application in the field has been limited to a relatively low number of crops, excluding leek, due to the high investment costs and complex data gathering and analysis associated with these sensors. To fill this gap, a methodology was developed for detecting leek rust disease using hyperspectral proximal sensing data combined with supervised machine learning. First, a hyperspectral library was constructed containing 43,416 spectra with a waveband range of 400–1000 nm, measured under field conditions. Then, an extensive evaluation of 11 common classifiers was performed using the scikit-learn machine learning library in Python, combined with a variety of wavelength selection techniques and preprocessing strategies. The best performing model was a (linear) logistic regression model that was able to correctly classify rust disease with an accuracy of 98.14 %, using reflectance values at 556 and 661 nm, combined with the value of the first derivative at 511 nm. This model was used to classify unlabelled hyperspectral images, confirming that the model was able to accurately classify leek rust disease symptoms. It can be concluded that the results in this work are an important step towards the mapping of leek rust disease, and that future research is needed to overcome certain challenges before variable rate fungicide applications can be adopted against leek rust disease.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Sign in / Sign up

Export Citation Format

Share Document