Implementation of a decision support system for prediction of the total soluble solids of industrial tomato using machine learning models

2022 ◽  
Vol 193 ◽  
pp. 106688
Author(s):  
Christoforos-Nikitas Kasimatis ◽  
Evangelos Psomakelis ◽  
Nikolaos Katsenios ◽  
Giannis Katsenios ◽  
Marilena Papatheodorou ◽  
...  
2021 ◽  
Vol 13 (3) ◽  
pp. 408
Author(s):  
Charles Nickmilder ◽  
Anthony Tedde ◽  
Isabelle Dufrasne ◽  
Françoise Lessire ◽  
Bernard Tychon ◽  
...  

Accurate information about the available standing biomass on pastures is critical for the adequate management of grazing and its promotion to farmers. In this paper, machine learning models are developed to predict available biomass expressed as compressed sward height (CSH) from readily accessible meteorological, optical (Sentinel-2) and radar satellite data (Sentinel-1). This study assumed that combining heterogeneous data sources, data transformations and machine learning methods would improve the robustness and the accuracy of the developed models. A total of 72,795 records of CSH with a spatial positioning, collected in 2018 and 2019, were used and aggregated according to a pixel-like pattern. The resulting dataset was split into a training one with 11,625 pixellated records and an independent validation one with 4952 pixellated records. The models were trained with a 19-fold cross-validation. A wide range of performances was observed (with mean root mean square error (RMSE) of cross-validation ranging from 22.84 mm of CSH to infinite-like values), and the four best-performing models were a cubist, a glmnet, a neural network and a random forest. These models had an RMSE of independent validation lower than 20 mm of CSH at the pixel-level. To simulate the behavior of the model in a decision support system, performances at the paddock level were also studied. These were computed according to two scenarios: either the predictions were made at a sub-parcel level and then aggregated, or the data were aggregated at the parcel level and the predictions were made for these aggregated data. The results obtained in this study were more accurate than those found in the literature concerning pasture budgeting and grassland biomass evaluation. The training of the 124 models resulting from the described framework was part of the realization of a decision support system to help farmers in their daily decision making.


2021 ◽  
Vol 26 (1) ◽  
pp. 87-93
Author(s):  
Sandeep Patalay ◽  
Madhusudhan Rao Bandlamudi

Investing in stock market requires in-depth knowledge of finance and stock market dynamics. Stock Portfolio Selection and management involve complex financial analysis and decision making policies. An Individual investor seeking to invest in stock portfolio is need of a support system which can guide him to create a portfolio of stocks based on sound financial analysis. In this paper the authors designed a Financial Decision Support System (DSS) for creating and managing a portfolio of stock which is based on Artificial Intelligence (AI) and Machine learning (ML) and combining the traditional approach of mathematical models. We believe this a unique approach to perform stock portfolio, the results of this study are quite encouraging as the stock portfolios created by the DSS are based on strong financial health indices which in turn are giving Return on Investment (ROI) in the range of more than 11% in the short term and more than 61% in the long term, therefore beating the market index by a factor of 15%. This system has the potential to help millions of Individual Investors who can make their financial decisions on stocks and may eventually contribute to a more efficient financial system.


2019 ◽  
Vol 892 ◽  
pp. 274-283
Author(s):  
Mohammed Ashikur Rahman ◽  
Afidalina Tumian

Now a day, clinical decision support systems (CDSS) are widely used in the cardiac care due to the complexity of the cardiac disease. The objective of this systematic literature review (SLR) is to identify the most common variables and machine learning techniques used to build machine learning-based clinical decision support system for cardiac care. This SLR adopts the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA) format. Out of 530 papers, only 21 papers met the inclusion criteria. Amongst the 22 most common variables are age, gender, heart rate, respiration rate, systolic blood pressure and medical information variables. In addition, our results have shown that Simplified Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) are some of the most common assessment scales used in CDSS for cardiac care. Logistic regression and support vector machine are the most common machine learning techniques applied in CDSS to predict mortality and other cardiac diseases like sepsis, cardiac arrest, heart failure and septic shock. These variables and assessment tools can be used to build a machine learning-based CDSS.


Sign in / Sign up

Export Citation Format

Share Document