scholarly journals Recent advances in computational modeling of fibrin clot formation: A review

2019 ◽  
Vol 83 ◽  
pp. 107148 ◽  
Author(s):  
Sumith Yesudasan ◽  
Rodney D. Averett
1994 ◽  
Vol 72 (02) ◽  
pp. 244-249 ◽  
Author(s):  
Aura S Kamiguti ◽  
Joseph R Slupsky ◽  
Mirko Zuzel ◽  
Charles R M Hay

SummaryHaemorrhagic metalloproteinases from Bothrops jararaca and other venoms degrade vessel-wall and plasma proteins involved in platelet plug and fibrin clot formation. These enzymes also cause proteolytic digestion of fibrinogen which has been suggested to cause defective platelet function. Fibrinogen degradation by jararhagin, a metalloproteinase from B. jararaca, and the effect of jararhagin fibrinogenolysis on both platelet aggregation and fibrin clot formation were investigated. Jararhagin was found to cleave human fibrinogen in the C-terminal region of the Aα-chain giving rise to a 285-290 kDa fibrinogen molecule lacking the Aα-chain RGD 572-574 platelet-binding site. Platelet binding and aggregation of ADP-activated platelets is unaffected by this modification. This indicates that the lost site is not essential for platelet aggregation, and that the remaining platelet binding sites located in the N-terminal portion of Aα chains (RGD 95-97) and the C-terminal of γ chains (dodecapeptide 400-411) are unaffected by jararhagin-digestion of fibrinogen. Fibrin clot formation with thrombin of this remnant fibrinogen molecule was defective, with poor polymerization of fibrin monomers but normal release of FPA. The abnormal polymerization could be explained by the loss of one of the two complementary polymerization sites required for side-by-side association of fibrin protofibrils. Jararhagin-induced inhibition of platelet function, an important cause of haemorrhage in envenomed patients, is not caused by proteolysis of fibrinogen, as had been thought, and the mechanism remains to be elucidated.


1976 ◽  
Vol 36 (01) ◽  
pp. 037-048 ◽  
Author(s):  
Eric P. Brass ◽  
Walter B. Forman ◽  
Robert V. Edwards ◽  
Olgierd Lindan

SummaryThe process of fibrin formation using highly purified fibrinogen and thrombin was studied using laser fluctuation spectroscopy, a method that rapidly determines particle size in a solution. Two periods in fibrin clot formation were noted: an induction period during which no fibrin polymerization occurred and a period of rapid increase in particle size. Direct measurement of fibrin monomer polymerization and fibrinopeptide release showed no evidence of an induction period. These observations were best explained by a kinetic model for fibrin clot formation incorporating a reversible fibrinogen-fibrin monomer complex. In this model, the complex serves as a buffer system during the earliest phase of fibrin formation. This prevents the accumulation of free polymerizable fibrin monomer until an appreciable amount of fibrinogen has reacted with thrombin, at which point the fibrin monomer level rises rapidly and polymerization proceeds. Clinically, the complex may be a homeostatic mechanism preventing pathological clotting during periods of elevated fibrinogen.


RMD Open ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e001751
Author(s):  
Berthold Hoppe ◽  
Christian Schwedler ◽  
Hildrun Haibel ◽  
Maryna Verba ◽  
Fabian Proft ◽  
...  

ObjectiveGenetic determinants of fibrin clot formation and fibrinolysis have an impact on local and systemic inflammatory response. The aim of the present study was to assess whether coagulation-related genotypes affect the predictive value of C-reactive protein (CRP) in regards of radiographic spinal progression in axial spondyloarthritis (axSpA).MethodsTwo hundred and eight patients with axSpA from the German Spondyloarthritis Inception Cohort were characterised for genotypes of α-fibrinogen, β-fibrinogen (FGB) and γ-fibrinogen, factor XIII A-subunit (F13A) and α2-antiplasmin (A2AP). The relation between CRP levels and radiographic spinal progression defined as worsening of the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) by ≥2 points over 2 years was assessed in dependence on the respective genetic background in logistic regression analyses.ResultsOverall, CRP was associated with mSASSS progression ≥2 points: time-averaged CRP ≥10 mg/L, OR: 3.32, 95% CI 1.35 to 8.13. After stratification for coagulation-related genotypes, CRP was strongly associated with mSASSS progression in individuals predisposed to form loose, fibrinolysis-susceptible fibrin clots (FGB rs1800790GG, OR: 6.86, 95% CI 2.08 to 22.6; A2AP 6Trp, OR: 5.86, 95% CI 1.63 to 21.0; F13A 34Leu, OR: 8.72, 95% CI 1.69 to 45.1), while in genotypes predisposing to stable fibrin clots, the association was absent or weak (FGB rs1800790A, OR: 0.83, 95% CI 0.14 to 4.84; A2AP 6Arg/Arg, OR: 1.47, 95% CI 0.35 to 6.19; F13A 34Val/Val, OR: 1.72, 95% CI 0.52 to 5.71).ConclusionsElevated CRP levels seem to be clearly associated with radiographic spinal progression only if patients are predisposed for loose fibrin clots with high susceptibility to fibrinolysis.


2020 ◽  
Vol 3 (4) ◽  
pp. 67
Author(s):  
Julie Brogaard Larsen ◽  
Anne-Mette Hvas

Disturbance in the balance between fibrin formation and fibrinolysis can lead to either bleeding or thrombosis; however, our current routine coagulation assays are not sensitive to altered fibrinolysis. The clot formation and lysis assay is a dynamic plasma-based analysis that assesses the patient’s capacity for fibrin formation and fibrinolysis by adding an activator of coagulation as well as fibrinolysis to plasma and measuring ex vivo fibrin clot formation and breakdown over time. This assay provides detailed information on the fibrinolytic activity but is currently used for research only, as the assay is prone to inter-laboratory variation and as it demands experienced laboratory technicians as well as specialized personnel to validate and interpret the results. Here, we describe a protocol for the clot formation and lysis assay used at our research laboratory.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Carolyn Vitale ◽  
Tianhui Ma ◽  
Michael J Solomon ◽  
J. Scott VanEpps

Bacterial infection is known to increase the risk for thromboembolism. The mechanism underlying this correlation remains largely unknown. We recently showed that the common pathogen Staphylococcus epidermidis retards clot formation, increases clot elasticity and generates a heterogeneous clot structure that remodels over time. Here, we elucidate the mechanism of this process by evaluating the capacity for S. epidermidis to bind to fibrinogen as a function of its growth phase. We hypothesized that the effect of S. epidermidis on a fibrin clot is related to its propensity toward biofilm formation. Therefore, stationary phase (biofilm-like) S. epidermidis will have a more robust effect on clot kinetics and elasticity than exponential phase (planktonic). Furthermore, this difference is mediated by increased adhesion to fibrinogen. Rheometry was used to evaluate the formation and resultant elasticity of fibrin clots with exponential or stationary phase S. epidermidis . A functional in vitro model was developed to evaluate adhesion of S. epidermidis to a fibrinogen coated surface in a continuously flowing environment. Fluorescent labeled exponential and stationary phase S. epidermidis were visualized flowing through a parallel plate microfluidic chamber past immobilized fibrinogen. Images were obtained every 3 seconds for 30 min. Bacterial deposition rate and mean adhesion time were quantified by automated image analysis. A paired Student’s t-test was used for statistical analysis. Stationary phase S. epidermidis retards clot formation and increases resultant elasticity while exponential phase only slightly reduces elasticity. The bacterial deposition rate onto fibrinogen was significantly (p=0.03) greater for stationary phase (1741 ± 1513 cells/cm 2 · sec -1 ) vs exponential phase (676 ± 270 cells/cm 2 · sec -1 ). The average adhesion time however was similar for exponential and stationary phase cells. Coagulation proteins can provide a framework for bacterial adhesion, biofilm formation and infection. In turn infected thrombi with (biofilm-like) bacteria are stiffer which correlates to more frequent bacterial binding to fibrinogen. This provides a potential molecular mechanism for infection mediated thromboembolic events.


2000 ◽  
Vol 6 (S2) ◽  
pp. 550-551
Author(s):  
John W. Weisel ◽  
Yuri Veklich ◽  
Jean-Philippe Collet

Fibrin clot formation is necessary for maintaining the integrity of the vasculature via the physiological processes of hemostasis and wound healing and is also involved in pathological processes, such as thrombosis and atherosclerosis. Fibrinolysis, or the dissolution of the clot, is necessary to remove clots so that they do not become obstructive. There must be a dynamic balance between clot formation and fibrinolysis to prevent either bleeding or thrombosis. Although the biochemical process of fibrinolysis is well known, less has been known about the physical process of lysis. In these studies, the surface of digested clots were examined by scanning electron microscopy, the products released were visualized by transmission electron microscopy and the process of lysis was followed in real time by confocal microscopy.Fibrin is degraded by the fibrinolytic system, in which a plasminogen activator converts plasminogen to plasmin, a serine protease that cleaves specific bonds in fibrin leading to solubilization.


1984 ◽  
Vol 71 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Kazuhiro Kataoka ◽  
Satoru Yamada ◽  
Naotika Toki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document