Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling

Author(s):  
Robert A. Witik ◽  
Remy Teuscher ◽  
Véronique Michaud ◽  
Christian Ludwig ◽  
Jan-Anders E. Månson
2020 ◽  
Vol 20 (2) ◽  
pp. 71-80 ◽  
Author(s):  
K. Ciecieląg ◽  
K. Kęcik ◽  
K. Zaleski

AbstractThe paper discusses the problem of possibility of the detecting surface defects in carbon fibre reinforced plastics (CFRP) materials on the basis of the milling time series. First, the special defects in the hole-shaped with various depth were made. Next, the cutting forces are measured during the milling machining. Finally, the recurrence plot and quantification analysis was applied. The obtained results show that the depth defect influences the selected recurrence quantifications, which can be used as the simple defect indicators. The conducted research allow to determine the percentage share of the detectable defects. The novelty of the work and an unresolved problem is the selection of recurrence quantifications with the simultaneous use of them to detect the size of defects in carbon fibre reinforced plastics.


2017 ◽  
Vol 25 (9) ◽  
pp. 677-682 ◽  
Author(s):  
Faruk Elaldi ◽  
Busra Baykan ◽  
Can Akto

For the last three decades, composites have become very preferable materials to be used in the automotive industry, structural parts of aircraft and military systems and spacecraft, due to their high strength and modulus. Composite materials are sometimes exposed to invisible or visible damage due to impact loading during their service life. In this study, the effect of impactor geometry with four different contact surfaces on woven carbon fibre-reinforced composite plates having three different thicknesses are investigated. In the first stage, composite plates were manufactured with the ply orientations of [45/-45/0/90/45/-45]2s, [45/-45/0/90/45/-45]3s, [45/-45/0/90/45/-45]4s based on conventional usage. In the second stage, carbon fibre-reinforced composite test panels were exposed to low velocity impact tests to obtain force-time, energy-time and force-displacement curves. Finally, semi and full penetration of composite panels and damage magnitude were determined. It was found that the impactor geometries with lower contact surfaces such as conical and ogive types were much more penetrative on composite plates than the other geometries, but they caused larger damage area in the vicinity of the impact point.


2020 ◽  
Vol 182 ◽  
pp. 107612 ◽  
Author(s):  
Nanya Li ◽  
Guido Link ◽  
Ting Wang ◽  
Vasileios Ramopoulos ◽  
Dominik Neumaier ◽  
...  

2019 ◽  
Vol 37 (1_suppl) ◽  
pp. 73-82 ◽  
Author(s):  
Marco Limburg ◽  
Jan Stockschläder ◽  
Peter Quicker

The increasing use of carbon fibre reinforced polymers requires suitable disposing and recycling options, the latter being especially attractive due to the high production cost of the material. Reclaiming the fibres from their polymer matrix however is not without challenges. Pyrolysis leads to a decay of the polymer matrix but may also leave solid carbon residues on the fibre. These residues prevent fibre sizing and thereby reuse in new materials. In state of the art, these residues are removed via thermal treatment in oxygen containing atmospheres. This however may damage the fibre’s tensile strength. Within the scope of this work, carbon dioxide and water vapour were used to remove the carbon residues. This aims to eliminate or at least minimize fibre damage. Improved quality of reclaimed fibres can make fibre reuse more desirable by enabling the production of high-quality recycling products. Still, even under ideal recycling conditions the fibres will shorten with every new life-cycle due to production-based blending. Fibre disposal pathways will therefore always also be necessary. The problems of thermal fibre disintegration are summarized in the second part of this article (Part 2: Energy recovery).


Sign in / Sign up

Export Citation Format

Share Document