Production of pervious low density carbon fibre reinforced composite articles

Composites ◽  
1978 ◽  
Vol 9 (2) ◽  
pp. 129
2020 ◽  
Vol 20 (2) ◽  
pp. 71-80 ◽  
Author(s):  
K. Ciecieląg ◽  
K. Kęcik ◽  
K. Zaleski

AbstractThe paper discusses the problem of possibility of the detecting surface defects in carbon fibre reinforced plastics (CFRP) materials on the basis of the milling time series. First, the special defects in the hole-shaped with various depth were made. Next, the cutting forces are measured during the milling machining. Finally, the recurrence plot and quantification analysis was applied. The obtained results show that the depth defect influences the selected recurrence quantifications, which can be used as the simple defect indicators. The conducted research allow to determine the percentage share of the detectable defects. The novelty of the work and an unresolved problem is the selection of recurrence quantifications with the simultaneous use of them to detect the size of defects in carbon fibre reinforced plastics.


Author(s):  
Robert A. Witik ◽  
Remy Teuscher ◽  
Véronique Michaud ◽  
Christian Ludwig ◽  
Jan-Anders E. Månson

2017 ◽  
Vol 25 (9) ◽  
pp. 677-682 ◽  
Author(s):  
Faruk Elaldi ◽  
Busra Baykan ◽  
Can Akto

For the last three decades, composites have become very preferable materials to be used in the automotive industry, structural parts of aircraft and military systems and spacecraft, due to their high strength and modulus. Composite materials are sometimes exposed to invisible or visible damage due to impact loading during their service life. In this study, the effect of impactor geometry with four different contact surfaces on woven carbon fibre-reinforced composite plates having three different thicknesses are investigated. In the first stage, composite plates were manufactured with the ply orientations of [45/-45/0/90/45/-45]2s, [45/-45/0/90/45/-45]3s, [45/-45/0/90/45/-45]4s based on conventional usage. In the second stage, carbon fibre-reinforced composite test panels were exposed to low velocity impact tests to obtain force-time, energy-time and force-displacement curves. Finally, semi and full penetration of composite panels and damage magnitude were determined. It was found that the impactor geometries with lower contact surfaces such as conical and ogive types were much more penetrative on composite plates than the other geometries, but they caused larger damage area in the vicinity of the impact point.


2020 ◽  
Vol 182 ◽  
pp. 107612 ◽  
Author(s):  
Nanya Li ◽  
Guido Link ◽  
Ting Wang ◽  
Vasileios Ramopoulos ◽  
Dominik Neumaier ◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Chenkai Zhu ◽  
Jingjing Li ◽  
Mandy Clement ◽  
Xiaosu Yi ◽  
Chris Rudd ◽  
...  

This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.


Sign in / Sign up

Export Citation Format

Share Document