scholarly journals Mechanical properties of transparent high strength biocomposites from delignified wood veneer

Author(s):  
Erik Jungstedt ◽  
Céline Montanari ◽  
Sören Östlund ◽  
Lars Berglund
Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract JESSOP JS600 is a nickel-chromium-iron alloy for use in environments requiring resistance to heat and/or corrosion. It has excellent mechanical properties and a combination of high strength and good workability. It performs well in applications with temperatures from cryogenic to more than 2000 F. Its many applications include aircraft/aerospace components, equipment for chemical and food processing and parts for heat-treating equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-287. Producer or source: Jessop Steel Company.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Allegheny Stainless Type 205 is a chromium-manganese nitrogen austenitic high strength stainless steel that maintains its low magnetic permeability even after large amounts of cold working. Annealed Type 205 has higher mechanical properties than any of the conventional austenitic steels-and for any given strength level, the ductility of Type 205 is comparable to that of Type 301. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-640. Producer or source: Allegheny Ludlum Corporation. Originally published March 1996, revised October 1997.


Alloy Digest ◽  
1982 ◽  
Vol 31 (7) ◽  

Abstract JESSOP JS17Cr-4Ni is a martensitic, precipitation-hardening chromium-nickel-copper stainless steel. It provides an excellent combination of high strength and hardness, short-time low-temperature precipitation hardening and good mechanical properties at temperatures up to 600 F (316 C). Its corrosion resistance is quite good but inferior to lower strength grades produced for corrosion-resistance applications. JS17Cr-4Ni is used widely for critical applications in the aerospace, chemical, food processing and other industries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-412. Producer or source: Jessop Steel Company.


Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.


Sign in / Sign up

Export Citation Format

Share Document