Metodología para el desarrollo de trayectorias en la aplicación por el proceso de soldadura GMAW en un robot industrial

Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.

2016 ◽  
Vol 368 ◽  
pp. 20-24
Author(s):  
Petr Hanus ◽  
Eva Schmidová

The research focuses on elastic-plastic behaviour of welded joints of materials which are commonly used in both constructional practice and the automotive industry. The examined welded joints are oriented to a common constructional S355 and a modern high-strength steel DOMEX 700MC.The main tool for the assessment of the elastic-plastic response was the methodology based on the instrumented penetration testing with the use of a cylindrical indenter. The indentation tool was applied into narrow zones of welded boundaries. These zones represent critical areas of welded constructions because of a changing structure and different mechanical properties than the basic material possesses. The indentation data were recalculated to the mechanical properties in shear with the help of Hencky ́s hypotheses about material behaviour. The correctness of the used methodology was verified by a tensile test. The aim of the work is to determine optimal methods for defining a yield strength and to find a hardening trend in the zones. The comparison of these steels revealed different changes due to the welding process. A substantial decrease of the yield strength of Domex700MC was observed, as a contrary to a stable, or partially increased, yield strength of the S355 steel. Structural analyses revealed a different material response of the evaluated steels, according to a different hardness in the heat affected zone.


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ho Thi My Nu ◽  
Truyen The Le ◽  
Luu Phuong Minh ◽  
Nguyen Huu Loc

The selection of high-strength titanium alloys has an important role in increasing the performance of aerospace structures. Fabricated structures have a specific role in reducing the cost of these structures. However, conventional fusion welding of high-strength titanium alloys is generally conducive to poor mechanical properties. Friction welding is a potential method for intensifying the mechanical properties of suitable geometry components. In this paper, the rotary friction welding (RFW) method is used to study the feasibility of producing similar metal joints of high-strength titanium alloys. To predict the upset and temperature and identify the safe and suitable range of parameters, a thermomechanical model was developed. The upset predicted by the finite element simulations was compared with the upset obtained by the experimental results. The numerical results are consistent with the experimental results. Particularly, high upset rates due to generated power density and forging pressure overload that occurred during the welding process were investigated. The performances of the welded joints are evaluated by conducting microstructure studies and Vickers hardness at the joints. The titanium rotary friction welds achieve a higher tensile strength than the base material.


2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


Author(s):  
Vijay S Gadakh ◽  
Vishvesh J Badheka ◽  
Amrut S Mulay

The dissimilar material joining of aluminum and titanium alloys is recognized as a challenge due to the significant differences in the physical, chemical, and metallurgical properties of these alloys, where the increasing demands for high strength and lightweight alloys in aerospace, defense, and automotive industries. Joining these two alloys using the conventional fusion techniques produces commercially unacceptable sound joints due to irregular, complex weld pool shapes, cracking and low strength, high residual stresses, cracks, and microporosity, and the brittle intermetallic compounds formation leads to poor formability or inferior mechanical properties. The formation of intermetallic compounds is inevitable but it is less severe in solid-state than in the fusion welding process. Hence, this article reviews on aluminum–titanium joining using different solid-state and hybrid joining processes with emphasis on the effect of process parameters of the different processes on the weld microstructure, mechanical properties along with the type of intermetallic compounds and defects formed at the weld interface. Among the various solid-state welding processes for aluminum–titanium joining, the following grades of aluminum and titanium alloys were employed such as cp Ti, Ti6Al4V, cp Al, AA1xxx, AA 2xxx, AA5xxx, AA6xxx, AA7xxx, out of which Ti6Al4V and AA6xxx alloys are the most common combination.


2021 ◽  
Vol 1035 ◽  
pp. 377-387
Author(s):  
Xin Wei Wang ◽  
Ren Bo Song ◽  
Zhong Zheng Pei ◽  
Xing Han Chen

In this paper, ER70-Ti welding wire steel produced by an enterprise was used as the test material. The final rolling temperature was set at 960 °C, 930 °C and 900 °C, and the spinning temperature was set at 880 °C, 860 °C and 840 °C. The results showed that the microhardness of the steel decreased from 303HV to 248HV and from 317HV to 276HV as the spinning temperature decreased from 880 °C to 840 °C. The microstructure and mechanical properties of the wires with the diameters of 5.5mm, 4mm, 2.5mm, 1.4 mm and 1.2mm were examined. It was observed that the microstructure of each sample had bainite and ferrite dual phase structure. With the decrease of wire diameter, the strength gradually increased and the ductility decreased. The experimental results show that the existence of bainite structure in the welding wire is the main reason for the high strength of the welding wire and easy fracture in drawing. Based on this, the final rolling temperature of 900 °C and the spinning temperature of 840 °C should be adopted in the production of ER70-Ti welding wire steel.


2018 ◽  
Vol 1146 ◽  
pp. 38-43
Author(s):  
Ana Boşneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Cristian Ciucă

Friction Stir Welding, abbreviated FSW is an innovative joining process. The FSW is a solid-state welding process with a lot of advantages comparing to the traditional arc welding, such as the following: it uses a non-consumable tool, it results of good mechanical properties, it can use dissimilar materials and it have a low environmental impact. First of all, the FSW process was developed to join similar aluminum plates, and now, the technology was developed and the FSW process is used to weld large types of materials, similar or dissimilar. In this paper it is presented an experimental study and the results of it, which includes the welding of three dissimilar aluminum alloy, with different chemical and mechanical properties. This three materials are: AA2024, AA6061 and AA7075. The welding joints and the welding process were analyzed considering: process temperature, micro-hardness, macrostructure and microstructure.


2016 ◽  
Vol 879 ◽  
pp. 1760-1765 ◽  
Author(s):  
Rahul Sharma ◽  
Uwe Reisgen

The application of high strength steels in welded structures relies on easy to use quality assurance concepts for the welding process. For ferritic steels, one of the most common methods for estimating the mechanical properties of welded joints is the cooling time concept t8/5. Even without experimental determination, the calculation of cooling time with previously introduced formulas based on the welding parameters leads to good results. Because high strength structural steels and weld metals with a yield strength of 960 MPa contain higher quantities of alloying elements, the transformation start temperature Ar3 is found to be outside of the range of 800 °C to 500 °C. This leads to inadequate estimation results, as the thermal arrest caused by the microstructural transformation in this case is not considered. In this work the usage of the well-proven cooling time concept t8/5 is analyzed using high strength fine grained structural steels and suitable welding filler wires during gas metal arc and submerged arc welding processes. The results are discussed taking into account the microstructure and the transformation behavior. Based on the experimental work, an improved concept is presented.


2019 ◽  
Vol 815 ◽  
pp. 114-119
Author(s):  
Zhen Liang Li ◽  
Hao Ke ◽  
Yang Shen ◽  
Xi Wang ◽  
Jiao Zhong

In this paper, the properties of the base metal of the low-alloy high-strength steel 20MnTiB, the welding process and the microstructure and properties of the welded joints were studied. The results are as follows: post-heat treatment below 400°C, the strength change of the steel decreases slowly, the elongation does not change significantly, and the metallographic structure is not obvious. When the temperature is above 400, the strength is greatly reduced. And its plasticity increases remarkably, and precipitates on the grain boundary are precipitated and grown on the metallographic structure. When the line energy is in the range of 9.6~12.0kJ/cm, the mechanical properties and microstructure of the welded joints meet the requirements, and the welding process that meets the requirements is studied. Finally, the mechanical properties and microstructure of the welded joint are studied. Provide a reference for the research and application of steel.


2015 ◽  
Vol 766-767 ◽  
pp. 745-750 ◽  
Author(s):  
K. Umanath ◽  
K. Palanikumar

The rotary type continuous friction welding process is a solid state joining process by mechanically. It produces a joint in the forging pressure contact with rotating and motionless workpiece. The solid state joining process it produces welds with reduced distortion and improved mechanical properties. The austenitic stainless steels are widely used in shipbuilding field, nuclear field and automobile field because of their special mechanical and metallurgical properties. In this work, friction welding of austenitic stainless steel rods of 10mm diameter was investigated with an aim to understand the influence of friction welding process parameters. The details of microstructure analysis using optical microscopy are discussed.


Sign in / Sign up

Export Citation Format

Share Document