On the wear properties of Nylon6-SiC-Al 2 O 3 based fused deposition modelling feed stock filament

2017 ◽  
Vol 119 ◽  
pp. 125-131 ◽  
Author(s):  
Rupinder Singh ◽  
Narinder Singh ◽  
Ada Amendola ◽  
Fernando Fraternali
2019 ◽  
Vol 48 (1) ◽  
pp. 18-23
Author(s):  
Nishant Ranjan ◽  
Rupinder Singh ◽  
IPS Ahuja

Fused deposition modelling (FDM) is one of the low cost additive manufacturing (AM) process. The feed stock filament of FDM is the only consumable in the process and by preparing (in-house) bio compatible feed stock filament the application domain can be increased. Some studies have reported the use of twin screw extrusion (TSE) process for preparation of bio compatible feed stock filament (comprising of polyvinyl chloride (PVC) and polypropylene (PP) and hydroxyapatite (HAp) particles) with improved mechanical, dimensional and thermal properties, for commercial FDM setup. But hitherto very less has been reported on process capability of in-house prepared biocompatible feed stock filament. In the present work statistical analysis (for tensile strength, hardness and dimensional accuracy) has been performed for investigations of process capability. The results have been also supported by control charts (X-chart and R-chart) based upon the best feedstock filament wire.


Author(s):  
Sahar Zhiani Hervan ◽  
Atakan Altınkaynak ◽  
Zeynep Parlar

The mechanical and tribological behaviors of the parts manufactured with 3D printing methods differ with variations in the manufacturing parameters. This paper aims to investigate the effect of the layer thickness and layer orientation parameters on the hardness, friction coefficient and wear properties of PLA samples printed by Fused Deposition Modelling (FDM) method. Samples were printed with three different layer thicknesses in two different build orientations. The hardness of the samples was tested by D-type shore hardness durometer and a pin-on-disc setup was used to measure the friction coefficient and wear rate of the samples. The analysis of the experimental results showed the distinctive effect of the layer orientation and layer thickness which further discussed in the paper.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

In this work, investigations were made for enhancing wear properties of rapid tooling (RT) by reinforcement of fillers (nanoscaled) for grinding applications. The RT has been prepared by using biocompatible composite material (BCCM) feed stock filament (consisting of Nylon 6 as a binder, reinforced with biocompatible nanoscale Al2O3 particles) on fused deposition modeling (FDM) for the development of grinding wheel having customized wear-resistant properties. A comparative study has been conducted under dry sliding conditions in order to understand the tribological characteristics of FDM printed RT of BCCM and commercially used acrylonitrile butadiene styrene (ABS) material. This study also highlights the various wear mechanisms (such as adhesive, fatigue, and abrasive) encountered during experimentation. Finally, the FDM printed RT of proposed BCCM feedstock filament is more suitable for grinding applications especially in clinical dentistry.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2289
Author(s):  
Nishata Royan Rajendran Royan ◽  
Jie Sheng Leong ◽  
Wai Nam Chan ◽  
Jie Ren Tan ◽  
Zainon Sharmila Binti Shamsuddin

As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years. This review attempts to summarise the current approaches of using NFRC as a feeder for AM. The effects of fibre treatments, composite preparation methods and addition of compatibilizer agents were analysed and discussed. Additionally, current methods of producing feeders from NFRCs were reviewed and discussed. Mechanical property of printed part was also dependent on the printing parameters, and thus the effects of printing temperature, layer height, infill and raster angle were discussed, and the best parameters reported by other researchers were identified. Following that, an overview of the mechanical properties of these composites as reported by various researchers was provided. Next, the use of optimisation techniques for NFRCs was discussed and analysed. Lastly, the review provided a critical discussion on the overall topic, identified all research gaps present in the use of NFRC for AM processes, and to overcome future challenges.


Sign in / Sign up

Export Citation Format

Share Document