High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes

2020 ◽  
Vol 199 ◽  
pp. 108279
Author(s):  
Yanpei Fei ◽  
Feng Chen ◽  
Wei Fang ◽  
Lixin Xu ◽  
Shilun Ruan ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2759
Author(s):  
Robert Olejník ◽  
Stanislav Goňa ◽  
Petr Slobodian ◽  
Jiří Matyáš ◽  
Robert Moučka ◽  
...  

The design of a unipole and a dual band F-shaped antenna was conducted to find the best parameters of prepared antenna. Antenna radiator part is fully made of polymer and nonmetal base composite. Thermoplastic polyurethane (PU) was chosen as a matrix and multi-wall carbon nanotubes (MWCNT) as an electrical conductive filler, which creates conductive network. The use of the composite for the antenna has the advantage in simple preparation through dip coating technique. Minor disadvantage is the usage of solvent for composite preparation. Composite structure was used for radiator part of antenna. The antenna operates in 2.45 and 5.18 GHz frequency bands. DC conductivity of our PU/MWCNT composite is about 160 S/m. With this material, a unipole and a dual band F antenna were realized on 2 mm thick polypropylene substrate. Both antenna designs were also simulated using finite integration technique in the frequency domain (FI-FD). Measurements and full wave simulations of S11 of the antenna showed good agreement between measurements and simulations. Except for S11, the gain and radiation pattern of the antennas were measured and simulated. Maximum gain of the designed unipole antenna is around −10.0 and −5.5 dBi for 2.45 and 5.18 GHz frequency bands, respectively. The manufactured antennas are intended for application in wearable electronics, which can be used to monitor various activities such as walking, sleeping, heart rate or food consumption.


2012 ◽  
Vol 135 (2-3) ◽  
pp. 921-927 ◽  
Author(s):  
Zhonglai Li ◽  
Ju Xu ◽  
Justin P. O'Byrne ◽  
Lan Chen ◽  
Kaixue Wang ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


2011 ◽  
Vol 26 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Meng-Li ZHAO ◽  
Yu-Chen YUE ◽  
Li YUAN ◽  
De-Jun LI ◽  
Xiao-Ying LÜ ◽  
...  

Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2020 ◽  
Vol 62 (11) ◽  
pp. 2173-2183
Author(s):  
V. V. Bolotov ◽  
E. V. Knyazev ◽  
P. M. Korusenko ◽  
S. N. Nesov ◽  
V. A. Sachkov

2021 ◽  
Vol 853 ◽  
pp. 156880
Author(s):  
Xiaohua Qi ◽  
Wenna Zhang ◽  
Na Yang ◽  
Di Yang ◽  
Igor Bychko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document