Tailoring 3D printed graded architected polymer foams for enhanced energy absorption

Author(s):  
Huan Jiang ◽  
Aaron Coomes ◽  
Zhennan Zhang ◽  
Hannah Ziegler ◽  
Yanyu Chen
2021 ◽  
pp. 109863
Author(s):  
J Jefferson Andrew ◽  
Hasan Alhashmi ◽  
Andreas Schiffer ◽  
S Kumar ◽  
Vikram S. Deshpande

2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


2018 ◽  
Vol 24 (2) ◽  
pp. 477-484
Author(s):  
Hossein Goodarzi Hosseinabadi ◽  
Reza Bagheri ◽  
Volker Altstädt

Purpose Hexagonal honeycombs with meso-metric cell size show excellent load bearing and energy absorption potential, which make them attractive in many applications. However, owing to their bend-dominated structure, honeycombs are susceptible to deformation localization. The purpose of this study is to provide insight about shear band propagation in struts of 3D-printed honeycombs and its relation to the achieved macroscopic mechanical behavior. Design/methodology/approach Hexagonal honeycombs and unit cell models are 3D-printed by fused deposition modeling (FDM). The samples are exposed to compression loading and digital image correlation technique and finite element analyses are incorporated. Findings It is found that the strain contours, which are obtained by finite element, are in agreement with experimental measurements made by DIC. In addition, three stages of shear band propagation in struts of 3D-printed honeycombs are illustrated. Then the correlation between shear band propagation stages and the achieved macroscopic mechanical responses is discussed in detail. Originality/value For the first time, a hierarchical activation of different modes of shear band propagation in struts of a 3D-printed honeycomb is reported. This information can be of use for designing a new generation of honeycombs with tailor-made localization and energy absorption potential.


2016 ◽  
Vol 112 ◽  
pp. 172-183 ◽  
Author(s):  
Simon R.G. Bates ◽  
Ian R. Farrow ◽  
Richard S. Trask
Keyword(s):  

2016 ◽  
Author(s):  
Simon R. G. Bates ◽  
Ian R. Farrow ◽  
Richard S. Trask
Keyword(s):  

2020 ◽  
Vol 6 (19) ◽  
pp. eaba5581 ◽  
Author(s):  
Mingyang Zhang ◽  
Qin Yu ◽  
Zengqian Liu ◽  
Jian Zhang ◽  
Guoqi Tan ◽  
...  

It is of significance, but still remains a key challenge, to simultaneously enhance the strength and damping capacities in metals, as these two properties are often mutually exclusive. Here, we provide a multidesign strategy for defeating such a conflict by developing a Mg-NiTi composite with a bicontinuous interpenetrating-phase architecture through infiltration of magnesium melt into three-dimensionally printed Nitinol scaffold. The composite exhibits a unique combination of mechanical properties with improved strengths at ambient to elevated temperatures, remarkable damage tolerance, good damping capacities at differing amplitudes, and exceptional energy absorption efficiency, which is unprecedented for magnesium materials. The shape and strength after deformation can even be largely recovered by heat treatment. This study offers a new perspective for the structural and biomedical applications of magnesium.


2018 ◽  
Vol 200 ◽  
pp. 886-909 ◽  
Author(s):  
H. Yazdani Sarvestani ◽  
A.H. Akbarzadeh ◽  
H. Niknam ◽  
K. Hermenean

Sign in / Sign up

Export Citation Format

Share Document