3D printed architected polymeric sandwich panels: Energy absorption and structural performance

2018 ◽  
Vol 200 ◽  
pp. 886-909 ◽  
Author(s):  
H. Yazdani Sarvestani ◽  
A.H. Akbarzadeh ◽  
H. Niknam ◽  
K. Hermenean
2022 ◽  
Vol 58 (4) ◽  
pp. 94-101
Author(s):  
Oana Alexandra Mocian ◽  
Dan Mihai Constantinescu ◽  
Florin Baciu ◽  
Andrei Indres

Architectured structures, particularly auxetic materials, have demonstrated encouraging applications in energy absorption as they facilitate the customization of their structural response. Specific geometries of unit cells can thus be tailored for particular needs due to recent progress in additive manufacturing techniques. This paper experimentally studies how the grading of the cell unit angle of an auxetic core in a sandwich panel affects its energy absorbing capability and structural response. 3D printed sandwich panels with uniform and graded auxetic cellular core were tested under quasistatic compression. The results show that sandwich panels with graded core exhibit much better energy absorption capabilities with higher plateau stress and densification strain. This indicates that, by appropriately controlling its geometry, auxetic structures can show further potential as core in sandwich panels for energy absorption applications.


2021 ◽  
pp. 109863
Author(s):  
J Jefferson Andrew ◽  
Hasan Alhashmi ◽  
Andreas Schiffer ◽  
S Kumar ◽  
Vikram S. Deshpande

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 556
Author(s):  
Zhenyu Zhao ◽  
Jianwei Ren ◽  
Shaofeng Du ◽  
Xin Wang ◽  
Zihan Wei ◽  
...  

Ultralight sandwich constructions with corrugated channel cores (i.e., periodic fluid-through wavy passages) are envisioned to possess multifunctional attributes: simultaneous load-carrying and heat dissipation via active cooling. Titanium alloy (Ti-6Al-4V) corrugated-channel-cored sandwich panels (3CSPs) with thin face sheets and core webs were fabricated via the technique of selective laser melting (SLM) for enhanced shear resistance relative to other fabrication processes such as vacuum brazing. Four-point bending responses of as-fabricated 3CSP specimens, including bending resistance and initial collapse modes, were experimentally measured. The bending characteristics of the 3CSP structure were further explored using a combined approach of analytical modeling and numerical simulation based on the method of finite elements (FE). Both the analytical and numerical predictions were validated against experimental measurements. Collapse mechanism maps of the 3CSP structure were subsequently constructed using the analytical model, with four collapse modes considered (face-sheet yielding, face-sheet buckling, core yielding, and core buckling), which were used to evaluate how its structural geometry affects its collapse initiation mode.


2017 ◽  
Vol 21 (3) ◽  
pp. 838-864 ◽  
Author(s):  
Yuansheng Cheng ◽  
Tianyu Zhou ◽  
Hao Wang ◽  
Yong Li ◽  
Jun Liu ◽  
...  

The ANSYS/Autodyn software was employed to investigate the dynamic responses of foam-filled corrugated core sandwich panels under air blast loading. The panels were assembled from metallic face sheets and corrugated webs, and PVC foam inserts with different filling strategies. To calibrate the proposed numerical model, the simulation results were compared with experimental data reported previously. The response of the panels was also compared with that of the empty (unfilled) sandwich panels. Numerical results show that the fluid–structure interaction effect was dominated by front face regardless of the foam fillers. Foam filling would reduce the level of deformation/failure of front face, but did not always decrease the one of back face. It is found that the blast performance in terms of the plastic deflections of the face sheets can be sorted as the following sequence: fully filled hybrid panel, front side filled hybrid panel, back side filled hybrid panel, and the empty sandwich panel. Investigation into energy absorption characteristic revealed that the front face and core web provided the most contribution on total energy absorption. A reverse order of panels was obtained when the maximization of total energy dissipation was used as the criteria of blast performance.


2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


2018 ◽  
Vol 25 (4) ◽  
pp. 797-805 ◽  
Author(s):  
R.S. Jayaram ◽  
V.A. Nagarajan ◽  
K.P. Vinod Kumar

Abstract Honeycomb sandwich panels entice continuously enhanced attention due to its excellent mechanical properties and multi-functional applications. However, the principal problem of sandwich panels is failure by face/core debond. Novel lightweight sandwich panels with hybrid core made of honeycomb, foam and through-thickness pin was developed. Reinforcing polyester pins between faces and core is an effectual way to strengthen the core and enhance the interfacial strength between the face/core to improve the structural performance of sandwich panels. To provide feasibility for pin reinforcement, honeycomb core was pre-filled with foam. Mechanical properties enhancement due to polyester pinning were investigated experimentally under flatwise compression, edgewise compression and flexural test. The experimental investigations were carried out for both “foam filled honeycomb sandwich panels” (FHS) and “polyester pin-reinforced foam filled honeycomb sandwich panels” (PFHS). The results show that polyester pin reinforcement in foam filled honeycomb sandwich panel enhanced the flatwise, edgewise compression and flexural properties considerably. Moreover, increasing the pin diameter has a larger effect on the flexural rigidity of PFHS panels. PFHS panels have inconsequential increase in weight but appreciably improved their structural performance.


2019 ◽  
Vol 25 ◽  
pp. 52-57
Author(s):  
Eva Heiml ◽  
Anna Kalteis ◽  
Zoltan Major

Lattice structures are currently of high interest, especially for lightweight design. They generally have better structural performance per weight than parts made of bulk material. With conventional manufacturing techniques they are difficult to produce, but with additive manufacturing (AM) fabricationisfeasible. To better understand their behaviour under various loading conditions two lattice structures in different configurations were observed. For each structure three different test specimens were designed and manufactured using selective laser sintering (SLS). To investigate the mechanical performance under large deformations the specimens were made of a thermoplastic polyurethane(TPU), which shows a hyperelastic material behaviour. Beside the experimental observations also finite element analyses (FEA) were conducted to investigate the deformation behaviour in more detail.


Sign in / Sign up

Export Citation Format

Share Document