Improved composite open-hole compression strength and trade-off with manufacturability controlled by stacking sequence effect and non-standard ply angles

Author(s):  
Su Yu ◽  
Yunpei Yang ◽  
Jonathan S. Colton
Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


2001 ◽  
Vol 13 (4) ◽  
pp. 235-250 ◽  
Author(s):  
Roberto J Cano ◽  
Tan H Hou ◽  
Erik S Weiser ◽  
Terry L St Clair

Four NASA Langley-developed polyimide matrix resins, LaRC™-IA, LaRC™-IAX, LaRC™-8515 and LaRC™-PETI-5, were produced via a ‘salt-like’ process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fibre using the NASA LaRC™ multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behaviour and the resin rheology were characterized. Composite moulding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fibre/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fibre manufactured via poly(amide acid) solutions (30–35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.


Sign in / Sign up

Export Citation Format

Share Document