Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites by improving interfacial bonding strength through plasma-polymerization

2019 ◽  
Vol 182 ◽  
pp. 107756 ◽  
Author(s):  
Siwon Yu ◽  
Kyung Hwan Oh ◽  
Soon Hyung Hong
2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040014
Author(s):  
Yun-Hae Kim ◽  
Kyo-Moon Lee ◽  
Seong-Jae Park ◽  
Kyung-In Jo ◽  
Soo-Jeong Park

Prepreg technology generates air pockets at the interface of laminates under heating and pressurization. The air pockets cause defects in the through-thickness direction. This includes poor adhesion between layers, which degrades material properties. Therefore, in this study, cryogenic mechanical properties were compared to obtain uniform properties by using prepreg laminated and resin film infused glass fiber reinforced plastic (GFRP) composites (“PP-only” and “RF-only”, respectively) while maintaining the constituent contents of the fiber and polymer. Moreover, stepped repair was applied to extend the life of composites. The results demonstrated that the stiffness of the composites improved, and the brittleness increased in cryogenic environments. In the case of PP-only, numerous voids were observed inside the polymer, which showed higher bending strength than RF-only; however, it exhibited significantly lower interfacial bonding strength. When applied to secondary bonding of stepped repair, RF-only as repair layers showed high strength recovery rate in homogeneous materials, and not in heterogeneous materials. In contrast, the high strength PP-only as a parent material and RF-only as repair layers showed relatively good interfacial bonding strength due to primary damage in the PP of a parent material. Hence, the RF-only can be considered useful as a repair material.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1270 ◽  
Author(s):  
Bingyan Jiang ◽  
Muhan Zhang ◽  
Liang Fu ◽  
Mingyong Zhou ◽  
Zhanyu Zhai

Hybrid fiber reinforced thermoplastic composites are receiving important attention in lightweight applications. The fabrication process of hybrid thermoplastic composites is that discontinuous fiber reinforced thermoplastics are injected onto the continuous fiber reinforced thermoplastics by over-molding techniques. The key issue during this process is to get a reliable interfacial bonding strength. To understand the bonding mechanism at the heterogeneous interface of hybrid thermoplastic composites which is difficult to obtain through experimental investigations, a series of molecular dynamic (MD) simulations were conducted in this paper. The influence of processing parameters on the interfacial characteristics, i.e., the distribution of interfacial high-density enrichment areas, radius of gyration, diffusion coefficient and interfacial energy, were investigated during the forming process of a heterogeneous interface. Simulation results reveal that some of molecule chains get across the interface and tangle with the molecules from the other layer, resulting in the penetration phenomenon near the interface zone. In addition, the melting temperature and injection pressure exhibit positive effects on the interfacial properties of hybrid composites. To further investigate the interfacial bonding strength and fracture mechanism of the heterogeneous interface, the uniaxial tensile and sliding simulations were performed. Results show that the non-bonded interaction energy plays a crucial role during the fracture process of heterogeneous interface. Meanwhile, the failure mode of the heterogeneous interface was demonstrated to evolve with the processing parameters.


2000 ◽  
Vol 654 ◽  
Author(s):  
Youngman Kim ◽  
Jong-Hoon Jeong ◽  
Jae-Chul Lee

AbstractMetal matrix composites (MMC's) are known to have wide applications in parts of transportation devices such as automobiles and aircraft. Al matrix composites using SiC particles as reinforcements are especially spotlighted because of low cost, superior specific modulus, specific strength, wear resistance and high temperature stability. However, Al4C3 formed by the interfacial reaction between Al and SiC weakens the interfacial bonding strength. It is also known to be unstable in the water-soluble atmosphere.In this study, the passive oxidation of SiC powder is used as protective layer against the reaction between the Al matrix and the SiC particle. We investigated the changes in interfacial product of the composites and mechanical properties such as interfacial bonding strength, and tensile strength in terms of the oxidized layer thickness of the reinforcement.


2019 ◽  
Vol 21 (6) ◽  
pp. 1801350 ◽  
Author(s):  
Miguel Jiménez ◽  
Joshua Vetter ◽  
Rainer Gadow ◽  
Francisco J. Carrión ◽  
José Sanes ◽  
...  

2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940021
Author(s):  
Yun-Hae Kim ◽  
Ji-Su Choi ◽  
Soo-Jeong Park

In this study, halloysite nanotubes (HNTs), an environmentally friendly inorganic nanomaterial, was added to epoxy matrix glass and basalt fiber reinforced plastics (GFRP and BFRP) by heat treatment of HNTs with crystalline and amorphous structure at [Formula: see text] and [Formula: see text]. Their interfacial bonding strength and effect of HNTs before and after carbonization by flame were analyzed. We found that the HNT/epoxy formed a physical barrier on the surface because of the char generated by carbonization. The barrier showed excellent thermal stability and limiting oxygen index in BFRP. The flexural strength after carbonization was low in the amorphous 1000HTHNT-BFRP with strong interfacial bonding. In other words, the morphological structure of the HNTs helped the improvement of the interfacial bonding strength; hence, the reinforcing effect of the HNTs on the thermal stability and mechanical strength before and after carbonization can be controlled.


Sign in / Sign up

Export Citation Format

Share Document