The effect of cylindrical defects on the tensile strength of glass fiber/vinyl-ester matrix reinforced composite pipes

2007 ◽  
Vol 79 (2) ◽  
pp. 270-279 ◽  
Author(s):  
E.N. Buarque ◽  
J.R.M. d’Almeida
2016 ◽  
Vol 60 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Rodrigo Borges Fonseca ◽  
Letícia Nunes de Almeida ◽  
Gustavo Adolfo Martins Mendes ◽  
Amanda Vessoni Barbosa Kasuya ◽  
Isabella Negro Favarão ◽  
...  

2017 ◽  
Vol 748 ◽  
pp. 55-61 ◽  
Author(s):  
Meshal Al-Samhan ◽  
A. Yussuf ◽  
S. Jacob

Fiber reinforced composite material is used widely in oil fields for its high specific strength and resistance to corrosion. Glass reinforced plastics (GRP) and Glass reinforced epoxy (GRE) pipe samples were investigated under oil field conditions. The samples were subjected to ultraviolet radiation, moisture and elevated temperature using accelerating weathering machine and then aged in different environments encountered in oil well streams and characterized by using Scanning Electron Microscopy (SEM). The surface morphology was analyzed and the images produced from wet crude and effluent water has shown different degree of deformation of the glass fiber and debonding with the polymer matrix. The tensile and modulus properties were also evaluated and effect of ageing found to be more pronounced in the case of wet crude especially for the GRE. The study revealed some tendency of GRP samples to reform the polymer matrix interface with the glass fiber after weathering. The assessment of physical properties provided information about the structural stability of composite pipes under harsh environments, which in turn can impact their overall performance and service life.


2016 ◽  
Vol 12 (3-4) ◽  
Author(s):  
Biljana Pop Metodieva ◽  
Sara Srebrenkoska ◽  
Vineta Srebrenkoska

In the present work, the attempt was made to assess the applicability of the full factorial experimental design in predicting the hoop tensile strength of glass fiber/ epoxy resin composite pipes by using of a split disk specimens. Split disk tension tests, provide reasonably accurate information with regard to the apparent tensile strength of composite pipe.In the study we used a number of composite pipes with different fiber orientation, fiber tension and velocity of the winding. The composite pipes were made by using of filament winding technology includes winding of resin impregnated fibers into a tool and hardening of the wound structure. The preparation of the composite experimental samples was conducted in accordance with the 23 full factorial experimental design. The winding speed of the composites was taken to be the first factor, the second was the fiber tension and the third winding angle. The first factor low and high levels were set at 5,21 m/min and 21 m/min, respec­tively, for the second factor – at 64N and 110N, respectively, and for the third factor – at 100 and 900. To approxi­mate the response i.e. the hoop tensile strength of the composite pipes within the study domain (5,25 – 21) m/min x (64-110)N x (10 – 90)0, the first order linear model with the interaction was used. The influence of each individual factor to the response function was established, as well as the influence of the interaction of the two and three factors. We found out that the estimated first-degree regression equation with the interaction gave a very good approximation of the experimental results of the hoop tensile strength of composites within the study domain.


2018 ◽  
Vol 52 (21) ◽  
pp. 2929-2948 ◽  
Author(s):  
Ahmed H Ali ◽  
Brahim Benmokrane ◽  
Hamdy M Mohamed ◽  
Allan Manalo ◽  
Adel El-Safty

This paper presents experimental investigation, statistical analysis, and theoretical predictions of tensile-strength retention of glass fiber-reinforced polymer bars, made with vinyl-ester, polyester, or epoxy resins. The durability of glass fiber-reinforced polymer bars was evaluated as a function of time of immersion in alkaline solution. The aging of the three glass fiber-reinforced polymer bar types consisted of immersion glass fiber-reinforced polymer bar samples in an alkaline solution (up to 5000 h) at different elevated exposure temperatures. Subsequently, the physical and tensile properties of the unconditioned bars were compared with that of the conditioned bars to assess the durability performance of the glass fiber-reinforced polymer bars. Microstructure of all of the glass fiber-reinforced polymer bar types was investigated with scanning electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy for both the conditioned and unconditioned cases, to qualitatively explain the experimental results and to assess changes and/or degradation in the glass fiber-reinforced polymer bars. In addition, the long-term performance of glass fiber-reinforced polymer bars was assessed considering the effect of service years, environmental humidity, and seasonal temperature fluctuations. The test results showed that the tensile strength of the glass fiber-reinforced polymer bars was affected by increased immersion time at higher temperatures and the reduction in tensile strength was statistically significantly dependent on the type of resin system. The prediction approach of the glass fiber-reinforced polymer bars based on the environmental reduction factor ( CE) after 200 years indicated that the CE values for vinyl-ester, epoxy, and polyester glass fiber-reinforced polymer bars can be conservatively recommended to 0.81, 0.75, and 0.71, respectively, for a moisture-saturated environment (relative humidity = 100%) and at 30℃. The polyester glass fiber-reinforced polymer bars experienced greater debonding at the fiber–resin interface than the vinyl-ester and epoxy glass fiber-reinforced polymer bars.


Sign in / Sign up

Export Citation Format

Share Document