Effects of the Number of Fatigue Cycles on the Hoop Tensile Strength of Glass Fiber/Epoxy Composite Pipes

2019 ◽  
Vol 19 (4) ◽  
pp. 1181-1186 ◽  
Author(s):  
Memduh Kara ◽  
Muhammed Kirici ◽  
Suleyman Cinar Cagan
2016 ◽  
Vol 58 (4) ◽  
pp. 333-336 ◽  
Author(s):  
Hawa Ahmad ◽  
Mohd. Shukry Abdul Majid ◽  
Mohd. Afendi Rojan ◽  
Fauziah Mat ◽  
Yakubu Dan-Mallam

2016 ◽  
Vol 51 (12) ◽  
pp. 1667-1679 ◽  
Author(s):  
A Fathy ◽  
A Shaker ◽  
M Abdel Hamid ◽  
AA Megahed

This paper presents an experimental and statistical study of the fatigue behavior of unidirectional glass fiber-reinforced epoxy composite rods manufactured using pultrusion technique and modified with nanoparticles of alumina (Al2O3) and silica (SiO2) at four different weight fractions (0.5, 1.0, 2.0 and 3.0 wt.%). Tensile test was performed to investigate the influence of nanoparticles. Addition of alumina nanoparticles up to 3 wt.% increases the tensile strength by 54.76% over the pure glass fiber-reinforced epoxy specimen. For silica nanoparticles, there is an increase in the tensile strength of 31.29% for the content of 0.5 wt.% over the pure glass fiber-reinforced epoxy specimen. As the silica nanoparticles’ content increases over 0.5 wt.%, there is a decrease in the tensile strength. Rotating bending fatigue tests have been conducted at five different stress levels. Fatigue life of glass fiber-reinforced epoxy composite rods modified with alumina nanoparticles increases as the content of the nanoparticles increases. The effect of adding silica nanoparticles on the fatigue life of glass fiber-reinforced epoxy composite rods is relatively insignificant with a small improvement in the content of 0.5 wt.% silica above the pure glass fiber-reinforced epoxy specimens. Two-parameter Weibull distribution function was used to statistically analyze the fatigue life data.


2016 ◽  
Vol 12 (3-4) ◽  
Author(s):  
Biljana Pop Metodieva ◽  
Sara Srebrenkoska ◽  
Vineta Srebrenkoska

In the present work, the attempt was made to assess the applicability of the full factorial experimental design in predicting the hoop tensile strength of glass fiber/ epoxy resin composite pipes by using of a split disk specimens. Split disk tension tests, provide reasonably accurate information with regard to the apparent tensile strength of composite pipe.In the study we used a number of composite pipes with different fiber orientation, fiber tension and velocity of the winding. The composite pipes were made by using of filament winding technology includes winding of resin impregnated fibers into a tool and hardening of the wound structure. The preparation of the composite experimental samples was conducted in accordance with the 23 full factorial experimental design. The winding speed of the composites was taken to be the first factor, the second was the fiber tension and the third winding angle. The first factor low and high levels were set at 5,21 m/min and 21 m/min, respec­tively, for the second factor – at 64N and 110N, respectively, and for the third factor – at 100 and 900. To approxi­mate the response i.e. the hoop tensile strength of the composite pipes within the study domain (5,25 – 21) m/min x (64-110)N x (10 – 90)0, the first order linear model with the interaction was used. The influence of each individual factor to the response function was established, as well as the influence of the interaction of the two and three factors. We found out that the estimated first-degree regression equation with the interaction gave a very good approximation of the experimental results of the hoop tensile strength of composites within the study domain.


2006 ◽  
pp. 97-106 ◽  
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Predrag Stajcic ◽  
Branislav Bajceta ◽  
Srdjan Bosnjak

Pipes made of composites glass fiber/epoxy resin are predominantly used in the chemical industry, construction, infrastructure and war technique. The pipes made for this purpose are in their use exposed to static and dynamic loading. Depending on the purpose, the pipes, especially those in complex structures, can be loaded by torsion. In that case, exceeding allowed tensions can cause damages such as cracking the fibers and matrix delamination. These damages can lead to the appearance of cracks on the pipes and in many cases to complete breakage of the pipe. Because of this, it is very important to evaluate composite pipes exposed to torsion and find out in which way the construction is weakened, what actually is the main goal of this paper.


2019 ◽  
Vol 61 (7) ◽  
pp. 618-620
Author(s):  
Naveen Raj Visvanathan ◽  
Mohd Shukry Abdul Majid ◽  
Faisal Abrar Syamsul Bahri ◽  
Mohd Ridzuan Mohd Jamir ◽  
Mohd Afendi Rojan Arau

Sign in / Sign up

Export Citation Format

Share Document