An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates

2018 ◽  
Vol 201 ◽  
pp. 561-569 ◽  
Author(s):  
H. Khoramishad ◽  
H. Alikhani ◽  
S. Dariushi
2021 ◽  
Author(s):  
Gholamhossein Majzoobi ◽  
Mohammad Kashfi ◽  
Mohsen Keshavarzan ◽  
Mohammadreza Riazalhosseini

2001 ◽  
Author(s):  
Wesley J. Cantwell ◽  
Graham Wade ◽  
J. Fernando Guillen ◽  
German Reyes-Villanueva ◽  
Norman Jones ◽  
...  

Abstract The impact resistance of a range of novel fiber metal laminates based on polypropylene, polyamide and polyetherimide matrices has been investigated. Initial attention focused on optimizing the interface between the composite and aluminum alloy constituents. Here, it was shown that composite-metal adhesion was excellent in all systems examined. In addition, tests at crosshead displacement rates up to 3 m/s indicated that the interfacial fracture energies remained high under dynamic loading conditions. High velocity impact tests on a series of 3/2 laminates (3 layers of aluminum/2 layers of composite) highlighted the outstanding impact resistance of a number of these systems. The glass fiber reinforced polypropylene system offered a particularly high impact resistance exhibiting a perforation energy of approximately 160 Joules. Here, failure mechanisms such as extensive plastic drawing in the aluminum layers and fiber fracture in the composite plies were found to contribute to the excellent energy-absorbing characteristics of these systems.


2020 ◽  
pp. 089270572097617
Author(s):  
B Yelamanchi ◽  
E MacDonald ◽  
NG Gonzalez-Canche ◽  
JG Carrillo ◽  
P Cortes

Fiber Metal Laminates (FML) are structures that contain a sequential arrangement of metal and composite materials, which are of great interest to the aerospace sector due to the superior mechanical performance. The traditional manufacturing process for FML involves considerable investment in manufacturing resources depending on the design complexity of the desired components. To mitigate such limitations, 3D printing enables direct digital manufacturing to create FML with customized configurations. In this work, a preliminary mechanical characterization of additively-manufacturing-enabled FML has been investigated. A series of continuous glass fiber-reinforced composites were printed with a Markforged system and placed between layers of aluminum alloy to manufacture hybrid laminate structures. The laminates were subjected to tensile, interfacial fracture toughness, and both low-velocity and high-velocity impact tests. The results showed that the FMLs appear to have a good degree of adhesion at the metal-composite interface, although a limited intralaminar performance was recorded. It was also observed that the low and high-velocity impact performance of the FMLs was improved by 9–13% relative to that of the constituent elements. The impact performance of the FML appeared to be related to the fiber fracture, out of plane perforation and interfacial delamination within the laminates. The present study can provide an initial research foundation for considering 3D printing in the production of hybrid laminates for static and dynamic applications.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5264
Author(s):  
Bharat Yelamanchi ◽  
Eric MacDonald ◽  
Nancy G. Gonzalez-Canche ◽  
Jose G. Carrillo ◽  
Pedro Cortes

The production and mechanical properties of fiber metal laminates (FMLs) based on 3D printed composites have been investigated in this study. FMLs are structures constituting an alternating arrangement of metal and composite materials that are used in the aerospace sector due to their unique mechanical performance. 3D printing technology in FMLs could allow the production of structures with customized configuration and performance. A series of continuous carbon fiber reinforced composites were printed on a Markforged system and placed between layers of aluminum alloy to manufacture a novel breed of FMLs in this study. These laminates were subjected to tensile, low velocity and high velocity impact tests. The results show that the tensile strength of the FMLs falls between the strength of their constituent materials, while the low and high velocity impact performance of the FMLs is superior to those observed for the plain aluminum and the composite material. This mechanism is related to the energy absorption process displayed by the plastic deformation, and interfacial delamination within the laminates. The present work expects to provide an initial research platform for considering 3D printing in the manufacturing process of hybrid laminates.


Sign in / Sign up

Export Citation Format

Share Document