Flexural behavior of hybrid concrete-filled fiber reinforced polymer tube columns

2019 ◽  
Vol 230 ◽  
pp. 111540
Author(s):  
Alexandra Hain ◽  
Arash E. Zaghi ◽  
M. Saiid Saiidi
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mervin Ealiyas Mathews ◽  
Anand N ◽  
Diana Andrushia A ◽  
Tattukolla Kiran ◽  
Khalifa Al-Jabri

PurposeBuilding elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.Design/methodology/approachIn this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.FindingsThe reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.Originality/valueSCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.


2020 ◽  
Vol 23 (7) ◽  
pp. 1487-1504 ◽  
Author(s):  
Bing Zhang ◽  
Jun-Liang Zhao ◽  
Tao Huang ◽  
Ning-Yuan Zhang ◽  
Yi-Jie Zhang ◽  
...  

Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns are a novel form of hollow columns that combine two traditional construction materials (i.e. concrete and steel) with fiber-reinforced polymer composites. Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns consist of an inner tube made of steel, an outer tube made of fiber-reinforced polymer, and a concrete layer between the two tubes. Existing studies, however, are focused on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with fibers of the fiber-reinforced polymer tube oriented in the hoop direction or close to the hoop direction. In order to investigate the effect of fiber angles (i.e. the fiber angle between the fiber orientation and the longitudinal axis of the fiber-reinforced polymer tube), monotonic axial compression tests were conducted on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±45°, ±60°, or ±80° fiber angles. There were two types of steel tubes adopted for these hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns. The fiber-reinforced polymer tube thickness was also investigated as an important parameter. Experimental results showed that the confinement effect of the fiber-reinforced polymer tube increased with the increase of the absolute value of fiber angles, whereas the ultimate axial strain of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns decreased with the increase of the absolute value of fiber angles. An existing stress–strain model, which was developed on the basis of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±90° fiber angles, is verified using the test results of this study. For the compressive strength of the confined concrete in hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns, the existing model provides conservative predictions for specimens with a ±80° fiber-reinforced polymer tube, overestimated predictions for specimens with a ±60° fiber-reinforced polymer tube, and close predictions for specimens with a ±45° fiber-reinforced polymer tube.


2016 ◽  
Vol 860 ◽  
pp. 156-159
Author(s):  
Seyha Yinh ◽  
Qudeer Hussain ◽  
Winyu Rattanapitikon ◽  
Amorn Pimanmas

This experimental study has been conducted on the efficiency of epoxy-bonded hemp fiber reinforced polymer (FRP) composites in flexural strengthening of reinforced concrete (RC) beams. A total of five RC beams were cast and tested up to failure. The test parameters included fiber thickness and strengthening configuration. The experimental results show the capability of hemp FRP composites to increase the loading capacity in flexure of RC beams compared with the un-strengthened beam. The enhancement of ultimate load becomes more significant as the fiber thickness is increased. The effectiveness of strengthened beams in U-wrapped scheme is found greater than strengthened beams in bottom-only scheme. Based on results, it indicates that hemp FRP has a potential to considerably increase the strength and stiffness of the original RC beam.


Sign in / Sign up

Export Citation Format

Share Document