Axial compressive behavior of engineered cementitious composite confined by fiber-reinforced polymer

2020 ◽  
Vol 243 ◽  
pp. 112191 ◽  
Author(s):  
Zheng Dang ◽  
Peng Feng ◽  
Jia-Qi Yang ◽  
Qian Zhang
2019 ◽  
Vol 53 (28-30) ◽  
pp. 4285-4304 ◽  
Author(s):  
Alaa Mohammedameen ◽  
Abdulkadir Çevik ◽  
Radhwan Alzeebaree ◽  
Anıl Niş ◽  
Mehmet Eren Gülşan

Conventional concrete suffers from brittle failures under mechanical behaviour, and lack of ductility results in the loss of human life and property in earthquake zones. Therefore, the degree of ductility becomes significant in seismic regions. This paper investigates the influence of poly-vinyl alcohol fibers, basalt fiber-reinforced polymer (BFRP) and carbon fiber-reinforced polymer (CFRP) fabrics on the ductility and mechanical performance of low (LCFA) and high (HCFA) calcium fly ash-based engineered cementitious composite concrete. The study also focuses on the mechanical behaviour of the CFRP and BFRP materials using different matrix types exposed to 3.5% seawater environment. Cyclic loading and scanning electron microscopy observations were also performed to see the effect of chloride attack on mechanical performance and ductility of the specimens. In addition, utilization of CFRP and BFRP fabrics as a retrofit material is also evaluated. Results indicated that the degree of ductility and mechanical performance were found to be superior for the CFRP-engineered cementitious composite hybrid specimens under ambient environment, while LCFA-CFRP hybrid specimens showed better performance under seawater environment. The effect of matrix type was also found significant when engineered cementitious composite is used together with fiber-reinforced polymer materials. In addition, both fiber-reinforced polymer materials can be used as a retrofit material under seawater environment.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2013 ◽  
Vol 351-352 ◽  
pp. 650-653 ◽  
Author(s):  
Thomas Vincent ◽  
Togay Ozbakkloglu

This paper presents an experimental investigation on the influence of confinement method and specimen end condition on axial compressive behavior of fiber reinforced polymer (FRP)-confined concrete. A total of 12 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were tested. Half of these specimens were manufactured as concrete-filled FRP tubes (CFFTs) and the remaining half were FRP-wrapped concrete cylinders. The effect of specimen end condition was examined on both CFFTs and FRP-wrapped specimens. This parameter was selected to study the influence of loading the FRP jacket on the axial compressive behavior. In this paper the experimentally recorded stress-strain relationships are presented graphically and key experimental outcomes discussed. The results indicate that the performance of FRP-wrapped specimens is similar to that of CFFT specimens and the influence of specimen end condition is negligible.


Sign in / Sign up

Export Citation Format

Share Document