Cyclic Behavior of Fiber Reinforced Polymer-Encased Engineered Cementitious Composite for Bridge Columns

Author(s):  
Pedram Zohrevand ◽  
Amir Mirmiran
2019 ◽  
Vol 53 (28-30) ◽  
pp. 4285-4304 ◽  
Author(s):  
Alaa Mohammedameen ◽  
Abdulkadir Çevik ◽  
Radhwan Alzeebaree ◽  
Anıl Niş ◽  
Mehmet Eren Gülşan

Conventional concrete suffers from brittle failures under mechanical behaviour, and lack of ductility results in the loss of human life and property in earthquake zones. Therefore, the degree of ductility becomes significant in seismic regions. This paper investigates the influence of poly-vinyl alcohol fibers, basalt fiber-reinforced polymer (BFRP) and carbon fiber-reinforced polymer (CFRP) fabrics on the ductility and mechanical performance of low (LCFA) and high (HCFA) calcium fly ash-based engineered cementitious composite concrete. The study also focuses on the mechanical behaviour of the CFRP and BFRP materials using different matrix types exposed to 3.5% seawater environment. Cyclic loading and scanning electron microscopy observations were also performed to see the effect of chloride attack on mechanical performance and ductility of the specimens. In addition, utilization of CFRP and BFRP fabrics as a retrofit material is also evaluated. Results indicated that the degree of ductility and mechanical performance were found to be superior for the CFRP-engineered cementitious composite hybrid specimens under ambient environment, while LCFA-CFRP hybrid specimens showed better performance under seawater environment. The effect of matrix type was also found significant when engineered cementitious composite is used together with fiber-reinforced polymer materials. In addition, both fiber-reinforced polymer materials can be used as a retrofit material under seawater environment.


2017 ◽  
Vol 21 (4) ◽  
pp. 613-623 ◽  
Author(s):  
Gamal Elnabelsy ◽  
Murat Saatcioglu

One of the applications of fiber-reinforced polymers in bridge construction is stay-in-place formwork. Fiber-reinforced polymer stay-in-place formwork, in the form of preformed tubes, provides easy form assembly, protection of steel reinforcement and concrete against corrosion and chemical attacks while also improving the strength and ductility of structural elements in earthquake resistant construction. Experimental research was conducted to investigate the seismic performance of fiber-reinforced polymer stay-in-place formwork for bridge columns. Tests of large-scale specimens were conducted under simulated seismic loading. The experimental program included circular and square columns confined with carbon fiber–reinforced polymer tubes. The results indicate that the use of carbon fiber–reinforced polymer tubes increases column inelastic deformability significantly. Bridge columns under low levels of axial compression exhibit inelastic drift capacities in excess of 4% before failing in flexural tension due to the rupturing of longitudinal reinforcement. These observations and experimental results were used to develop a displacement-based design procedure for concrete confinement for fiber-reinforced polymer–encased concrete columns. This article presents an overview of the experimental program and the design approach developed.


Sign in / Sign up

Export Citation Format

Share Document