Statistical Evaluation for Impact Resistance of Steel Fiber Reinforced Lightweight Aggregate Concrete

2011 ◽  
Vol 250-253 ◽  
pp. 609-613 ◽  
Author(s):  
Hong Wei Song ◽  
Hai Tao Wang

The impact resistance of steel fiber reinforced lightweight aggregate concrete was presented in a drop weight test. In this test, 5 groups of disc specimens with different steel fiber volumes including 0.0%, 0.5%, 1.0%, 1.5% and 2.0% were tested. The experimental results indicated that the impact resistance of lightweight aggregate concrete is improved with the increase in fiber volume. As the variation in experimental results, a statistical evaluation was performed to study the influence of impact resistance of steel fiber reinforced lightweight aggregate concrete with different steel fiber volumes. Further more, the impact resistance was simulated with probability distribution by Log-normal method. And the goodnees-of-fit tests indicate that the Log-normal method has good fitness to the impact resistance of steel fiber reinforced lightweight aggregate concrete.

2011 ◽  
Vol 250-253 ◽  
pp. 822-827
Author(s):  
Jun Fang Huo ◽  
Hui Yang ◽  
Yong Li Hou ◽  
Jian Jun Chu ◽  
Wei Ling Li

Pumice, polypropylene fiber, steel fiber and fly ash were used to compound fiber reinforced lightweight aggregate concrete (LWAC). The effect of fibers on frost resistance durability of LWAC is studied, which including freezing-thawing in 5% Na2SO4 solution and in water. The test results show that the strength loss of LWAC is reduced with the increase in fiber fraction, but the impact of mass loss is not obvious by mixing fiber. LWAC freezing-thawing deterioration is even more serious in salt solution than in water. SEM photo show that polypropylene fiber has more stronger cementing bond with paste than steel fiber. the mass loss and strength loss are decreased significantly. By introduction silica fume can improve Interfacial Transition Zone(ITZ)and the frost resistance of fibers reinforcement LWAC dramatically.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shunbo Zhao ◽  
Changyong Li ◽  
Mingshuang Zhao ◽  
Xiaoyan Zhang

Steel fiber reinforced lightweight-aggregate concrete (SFRLAC) has many advantages applied in structural engineering. In this paper, the autogenous shrinkage and drying shrinkage of SFRLAC for up to 270 days were measured, considering the effects of types of coarse and fine aggregates with the changes of water-to-binder ratio and volume fraction of steel fiber, respectively. The properties of mix workability, apparent density, and compressive strength of SFRLAC were also reported and discussed in relation to above factors. Test results show that the development of autogenous and drying shrinkage of SFRLAC was fast within 28 days and tended to be steady after 90 days. The development of autogenous shrinkage of SFRLAC reduced with the increasing water-to-binder ratio and by using the expanded shale with higher soundness and good water absorption, especially at early age within 28 days; the later drying shrinkage was reduced and the development of drying shrinkage was slowed down with the increasing volume fraction of steel fiber obviously; manufactured sand led to less autogenous shrinkage but greater drying shrinkage than fine lightweight aggregate in SFRLAC. The regularities of autogenous shrinkage and drying shrinkage of SFRLAC expressed as the series of hyperbola are analyzed.


2011 ◽  
Vol 261-263 ◽  
pp. 385-388
Author(s):  
Hai Tao Wang ◽  
Jin Qing Jia

In order to determine the impact resistance of lightweight aggregate concrete (LWC), especially the effect of steel fibers on impact resistance of LWC, a series of drop-weight tests, recommended by the ACI committee 544, have been carried out in the present study. Impact and flexural tests were carried out on lightweight aggregate concrete reinforced with five different percentages of steel fibers 0.0%, 0.5%, 1.0%, 1.5% and 2.0% by volume of concrete. For each volume of fibers, complete load–deflection curves of SFLWC were generated in order to determine the total energy absorbed for each specimen. The addition of steel fibers to concrete has improved impact resistance and also the flexural toughness. The test results showed that a logarithmic relation exists between flexural toughness energy by means of the generated load–deflection curves from the flexural tests and the impact energy by means of drop-weight tests.


2011 ◽  
Vol 197-198 ◽  
pp. 911-914 ◽  
Author(s):  
Li Yun Pan ◽  
Hao Yuan ◽  
Shun Bo Zhao

Tests were carried out to study mechanical properties of hybrid fiber reinforced full lightweight aggregate concrete (HFRFLAC), the hybrid fiber was composed by steel fiber and polypropylene fiber, the expanded-shale and lightweight sand were used as coarse and fine aggregates. The apparent density and strengths in cubic compressive, splitting tensile and flexural tensile states of HFRFLAC were obtained. The results show that the average dry apparent density increases with the increasing cement content, which is much more affected by fraction of steel fiber by volume than mass content of polypropylene fiber; the tensile strengths increase somewhat with the increasing mass content of polypropylene fiber; all of the strengths increase with the increasing fraction of steel fiber by volume, and obvious are the enhancement of tensile strengths; there are somewhat relevance between the effects of polypropylene fiber and steel fiber on mechanical properties of HFRFLAC.


Sign in / Sign up

Export Citation Format

Share Document