Impact damage tolerance of energy storage composite structures containing lithium-ion polymer batteries

2021 ◽  
pp. 113845
Author(s):  
K. Pattarakunnan ◽  
J. Galos ◽  
R. Das ◽  
A.P. Mouritz
2019 ◽  
Vol 414 ◽  
pp. 517-529 ◽  
Author(s):  
Purim Ladpli ◽  
Raphael Nardari ◽  
Fotis Kopsaftopoulos ◽  
Fu-Kuo Chang

2018 ◽  
Author(s):  
Purim Ladpli ◽  
Raphael Nardari ◽  
Fotis Kopsaftopoulos ◽  
Fu-Kuo Chang

This work proposes and analyzes a structurally-integrated lithium-ion battery concept. The multifunctional energy storage composite (MESC) structures developed here encapsulate lithium-ion battery materials inside high-strength carbon-fiber composites and use interlocking polymer rivets to stabilize the electrode layer stack mechanically. These rivets enable load transfer between battery layers, allowing them to store electrical energy while also contributing to the structural load carrying performance, without any modifications to the battery chemistry. The design rationale, fabrication processes, and experimental mechano-electrical characterization of first-generation MESCs are discussed. Experimental results indicate that the MESCs offer electrochemically equivalent performance to the baseline chemistry, despite the disruptive design change. The mechanically-functionalized battery stack’s contribution is assessed via quasi-static three-point bending tests, with results showing significantly improved mechanical stiffness and strength over traditional pouch cells. The rivets minimize interlayer shear movement of the electrode stack, thus allowing it to maintain electrochemical functionalities while carrying mechanical bending. While minimal load application can cause permanent deformation of pouch cells, MESCs maintain their structural integrity and energy-storage capabilities after realistic repeated loading. The results obtained demonstrate the mechanical robustness of MESCs, which allows them to be fabricated as energy-storing structures for electric vehicles and other applications.


2020 ◽  
Vol 199 ◽  
pp. 108366
Author(s):  
Jeong-In Go ◽  
Won-Jun Lee ◽  
Sang-Yong Kim ◽  
Sang-Min Baek ◽  
Won-Ho Choi

2011 ◽  
Vol 239-242 ◽  
pp. 872-875
Author(s):  
Tian Chun Zou ◽  
Peng Hao ◽  
Jia Rui Zhang ◽  
Zhen Yu Feng

In this paper, the probabilistic compliance methodology for damage tolerance design of thicker composite structures were investigated, and the research results show that for the composite laminates withstanding impact energy below 90J, if it cannot produce barely visible impact damage (BVID), then using the probabilistic methodology can meet certification requirements of damage tolerance.


2013 ◽  
Vol 577-578 ◽  
pp. 457-460
Author(s):  
Christine Espinosa ◽  
Miriam Ruiz-Ayuso ◽  
Frédéric Lachaud

The damage tolerance methodology is used here to compare impact damage from experimental testing and virtual (numerical) testing. The first part of the study aims to identify links between experimental internal (delaminated area) and external measurable damage (dent depth) for a typical aeronautical T800S/M21e laminate. Effects of the mass/velocity ratios at some level of impact energy are evaluated. It is shown that a big mass generates denser and larger delamination with about the same dent than a small mass, which is a critical case for damage tolerance analysis. A relation between the external dent depth and internal delaminated area is proposed.


2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


2021 ◽  
Vol 11 (3) ◽  
pp. 1322
Author(s):  
Dariusz Zieliński ◽  
Karol Fatyga

This paper proposes a control algorithm for a hybrid power electronic AC/DC converter for prosumer applications operating under deep phase current asymmetry. The proposed system allows independent control of active and reactive power for each phase of the power converter without current pulsation on the DC link connected to an energy store. The system and its algorithm are based on a three-phase converter in four-wire topology (AC/DC 3p-4w) with two dual-active bridge (DC/DC) converters, interfaced with a supercapacitor and an energy storage. The control algorithm tests were carried out in a Hardware in the Loop environment. Obtained results indicate that operation with deep unbalances and powers of opposite signs in individual phases leads to current oscillations in the DC link. This phenomenon significantly limits energy storage utilization due to safety and durability reasons. The proposed algorithm significantly reduces the level of pulsation in the DC link which increases safety and reduces strain on lithium-ion storage technology, enabling their application in four-wire converter applications.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


Sign in / Sign up

Export Citation Format

Share Document