Bimodulus constitutive relation and mesoscopic model of braided composites

2021 ◽  
pp. 114115
Author(s):  
Lanxin Jiang ◽  
Shoune Xiao ◽  
Bing Yang ◽  
Guangwu Yang ◽  
Tao Zhu ◽  
...  

2018 ◽  
Vol 60 (7-8) ◽  
pp. 772-776 ◽  
Author(s):  
Jiayi Liu ◽  
Junmeng Zhou ◽  
Yu Wang ◽  
Jie Mei ◽  
Jialin Liu


Author(s):  
Jenni Myllykoski ◽  
Anniina Rantakari

This chapter focuses on temporality in managerial strategy making. It adopts an ‘in-time’ view to examine strategy making as the fluidity of the present experience and draws on a longitudinal, real-time study in a small Finnish software company. It shows five manifestations of ‘in-time’ processuality in strategy making, and identifies a temporality paradox that arises from the engagement of managers with two contradictory times: constructed linear ‘over time’ and experienced, becoming ‘in time’. These findings lead to the re-evaluation of the nature of intention in strategy making, and the authors elaborate the constitutive relation between time as ‘the passage of nature’ and human agency. Consequently, they argue that temporality should not be treated merely as an objective background or a subjective managerial orientation, but as a fundamental characteristic of processuality that defines the dynamics of strategy making.







2021 ◽  
Vol 11 (8) ◽  
pp. 3466
Author(s):  
Lulu Liu ◽  
Shikai Yin ◽  
Gang Luo ◽  
Zhenhua Zhao ◽  
Wei Chen

Two-dimensional (2D) triaxial braided composites with braiding angle (± 60°/0°) have been used as aero-engine containing casing material. In the current paper, three types of projectile with the same mass and equivalent diameter, including cylinder gelatin projectile, carbon fiber-reinforced plastics (CFRP), and titanium alloy blade-like projectile, were employed to impact on triaxial braided composites panels with thickness of 4.3 mm at room temperature (20 °C) to figure out the influences of projectile materials on the damage pattern and energy absorption behavior. Furthermore, the influences of environmental temperature were also discussed considering the aviation service condition by conducting ballistic impact tests using CFRP projectile at cryogenic temperature (−50 °C) and high temperature (150 °C). The triaxial braided target panel were pre-heated or cooled in a low-temperature chamber before mounted. It is found that soft gelatin project mainly causes global deformation of the target and therefore absorb much more energy. The triaxial braided composite absorb 77.59% more energy when impacted with CFRP projectile than that with titanium alloy projectile, which mainly results in shear fracture. The environmental temperature has influences on the damage pattern and energy absorption of triaxial braided composites. The cryogenic temperature deteriorates the impact resistance of the triaxial braided composite material with matrix cracking damage pattern, while high temperature condition improves its impact resistance with shearing fracture damage pattern.







Author(s):  
Yuan-yuan Li ◽  
Zheng-qiang Lyu ◽  
Ping Wang ◽  
Ya-lan Wang ◽  
Ting Chen ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document