scholarly journals New insights on the structure of alpha-synuclein fibrils using cryo-electron microscopy

2020 ◽  
Vol 61 ◽  
pp. 89-95 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Lubomir Kovacik ◽  
Dongchun Ni ◽  
Henning Stahlberg
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Daniel Mona ◽  
Philippe Ringler ◽  
Matthias E Lauer ◽  
...  

Parkinson’s disease is a progressive neuropathological disorder that belongs to the class of synucleinopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1–121), determined by cryo-electron microscopy at a resolution of 3.4 Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50–57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.


2018 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas M. I. Taylor ◽  
Daniel Mona ◽  
Philippe Ringler ◽  
Matthias E. Lauer ◽  
...  

AbstractIntracellular inclusions of alpha-synuclein are the neuropathological hallmark of progressive disorders called synucleinopathies. Alpha-synuclein fibrils are associated with transmissive cell-to-cell propagation of pathology. We report the structure of an alpha-synuclein fibril (residues 1-121) determined by cryo-electron microscopy at 3.4Å resolution. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50-57, containing three mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft may have implications for fibril elongation, and inform the rational design of molecules for diagnosis and treatment of synucleinopathies.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Ana-Andreea Arteni ◽  
Pratibha Kumari ◽  
Daniel Mona ◽  
...  

Intracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson’s disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1–121), composed of two protofibrils that are connected via a densely-packed interface formed by residues 50–57 (Guerrero-Ferreira, eLife 218;7:e36402). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.0 Å and 3.4 Å resolution, respectively. These polymorphs show a radically different structure compared to previously reported polymorphs. The new structures have a 10 nm fibril diameter and are composed of two protofilaments which interact via intermolecular salt-bridges between amino acids K45, E57 (polymorph 2a) or E46 (polymorph 2b). The non-amyloid component (NAC) region of alpha-synuclein is fully buried by previously non-described interactions with the N-terminus. A hydrophobic cleft, the location of familial PD mutation sites, and the nature of the protofilament interface now invite to formulate hypotheses about fibril formation, growth and stability.


2019 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas M.I. Taylor ◽  
Ana-Andrea Arteni ◽  
Pratibha Kumari ◽  
Daniel Mona ◽  
...  

AbstractIntracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson’s disease (PD). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.0 Å and 3.4 Å resolution, respectively. These polymorphs show a radically different structure compared to previously reported polymorphs. The new structures have a 10 nm fibril diameter and are composed of two protofilaments which interact via intermolecular salt-bridges between amino acids K45, E57 (polymorph 2a) or E46 (polymorph 2b). The non-amyloid component (NAC) region of alpha-synuclein is fully buried by previously non-described interactions with the N-terminus. A hydrophobic cleft, the location of familial PD mutation sites, and the nature of the protofilament interface now invite to formulate hypotheses about fibril formation, growth and stability.Impact statementTwo new polymorphic structures of recombinant human alpha-synuclein fibrils show striking differences to previous structures, while familial PD mutation sites remain crucial for protofilament interaction and fibril stability.


Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Ana-Andreea Arteni ◽  
Pratibha Kumari ◽  
Daniel Mona ◽  
...  

2021 ◽  
Author(s):  
Benedikt Frieg ◽  
James A Geraets ◽  
Timo Strohaeker ◽  
Christian Dienemann ◽  
Panagiota Mavroeidi ◽  
...  

Synucleinopathies, such as Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases. For both PD and MSA, alpha-synuclein fibril inclusions inside brain cells are neuropathological hallmarks. In addition, amplification of alpha-synuclein fibrils from body fluids is a potential biomarker distinguishing PD from MSA. However, little is known about the structure of alpha-synuclein fibrils amplified from human samples and its connection to alpha-synuclein fibril structure in the human brain. Here we amplified alpha-synuclein fibrils from PD and MSA brain tissue, characterized its seeding potential in oligodendroglia, and determined the 3D structures by cryo-electron microscopy. We show that the alpha-synuclein fibrils from a MSA patient are more potent in recruiting the endogenous alpha-synuclein and evoking a redistribution of TPPP/p25alpha protein in mouse primary oligodendroglial cultures compared to those amplified from a PD patient. Cryo-electron microscopy shows that the PD- and MSA-amplified alpha-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface. The structures of the brain-tissue amplified alpha-synuclein fibrils are also similar to other in vitro and ex vivo alpha-synuclein fibrils. Together with published data, our results suggest that aSyn fibrils differ between PD and MSA in their quaternary arrangement and could further vary between different forms of PD and MSA.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Sign in / Sign up

Export Citation Format

Share Document