The influence of zeolite and powdered Bayburt stones on the water transport kinetics and mechanical properties of hydrated lime mortars

2015 ◽  
Vol 98 ◽  
pp. 345-352 ◽  
Author(s):  
Ceren Ince ◽  
Shahram Derogar ◽  
Nesrin Yardımcı Tiryakioğlu ◽  
Y. Cengiz Toklu
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1382
Author(s):  
Małgorzata Gołaszewska ◽  
Jacek Gołaszewski ◽  
Grzegorz Cygan ◽  
Jerzy Bochen

The article presented the analysis of the impact that various kinds of technological inaccuracies have on the properties of fresh masonry mortars and plasters. Analyzed were the inaccuracies in dosing of mortar components, namely, water, lime, and air-entraining plasticizing admixture (APA) (±10% of mass), and the effect of variable technological conditions, namely, different mixing intensity (fast, slow, normal) and temperature (5 °C, 20 °C, and 35 °C) during first 72 h after mixing. The impact of differences in the properties of cement and aerial (hydrated) lime originating from different manufacturers was also analyzed. The impact of these factors was determined for consistency, density, air content, compressive, and flexural strength. The sensitivity to changes in the analyzed properties was determined by the coefficient of variation. Changes in the dosing of constituents, mixing speed, and temperature adversely affected strength properties. For mortars with APA, these changes exceeded 20% and reached 40%. The greatest impact was evident in the consistency, especially with an excess of APA, where changes ranged from 6% to 80%. The results showed greater resistance of cement-lime mortars to changing selected technological conditions and errors in measuring the amount of ingredients than mortars with air-entraining plasticizing admixture (APA).


Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 236
Author(s):  
Kali Kapetanaki ◽  
Chrysi Kapridaki ◽  
Pagona-Noni Maravelaki

In recent years, lime mortars mixed with artificial or natural pozzolans are commonly used in restoration applications. The aim of this work is the assessment of carbonation, pozzolanic reaction, setting time, and mechanical properties of metakaolin–lime mortars mixed with crystalline nano-titania (nT) as additive. The studied mortars consist of hydrated lime and metakaolin in 60/40 ratio (wt%) and fine aggregates of either carbonate or silicate sand. The concentration of the nano-titania is equal to 6 (wt%) of the binder. For comparison purposes, three types of mortars and pastes are designed: Without the addition of nano-titania, with nT activated or not under UV irradiation. The evaluation of the carbonation and pozzolanic reaction over a 1.5-year curing period is carried out through thermal analysis (DTA/TG), infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD). The uniaxial compression and the three-point bending tests at 28 days, 3 months, and 6 months were carried out to evaluate mechanical properties. The addition of activated nano-titania, due to an increased photocatalytic activity, accelerated the setting of the mortars, improving at the same time the mechanical properties. The plastic behavior of the lime–metakaolin mortars with activated nT was attributed to the evolution of carbonation and pozzolanic reaction.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1109
Author(s):  
Mati Ullah Shah ◽  
Muhammad Usman ◽  
Muhammad Usman Hanif ◽  
Iqra Naseem ◽  
Sara Farooq

The huge amount of solid waste from the brick manufacturing industry can be used as a cement replacement. However, replacement exceeding 10% causes a reduction in strength due to the slowing of the pozzolanic reaction. Therefore, in this study, the pozzolanic potential of brick waste is enhanced using ultrafine brick powder with hydrated lime (HL). A total of six self-compacting paste mixes were studied. HL 2.5% by weight of binder was added in two formulations: 10% and 20% of waste burnt brick powder (WBBP), to activate the pozzolanic reaction. An increase in the water demand and setting time was observed by increasing the replacement percentage of WBBP. It was found that the mechanical properties of mixes containing 5% and 10% WBBP performed better than the control mix, while the mechanical properties of the mixes containing 20% WBBP were found to be almost equal to the control mix at 90 days. The addition of HL enhanced the early-age strength. Furthermore, WBBP formulations endorsed improvements in both durability and rheological properties, complemented by reduced early-age shrinkage. Overall, it was found that brick waste in ultrafine size has a very high degree of pozzolanic potential and can be effectively utilized as a supplementary cementitious material.


2015 ◽  
Vol 668 ◽  
pp. 419-432 ◽  
Author(s):  
Aline Figueirêdo Nóbrega de Azerêdo ◽  
Givanildo Azeredo ◽  
Arnaldo Manoel Pereira Carneiro

Many works have shown that metakaolin is very good pozzolanic material for using in lime mortars and Portland cement mortars. Alternatively, many studies also have shown that kaolin wastes, after some treatment, can become a high quality pozzolans. Most of these studies have discussed about the microstructural characteristics and hardened properties of pastes, mortars or concretes mixes containing metakaolin or kaolin wastes cured in moist environment. In this work pastes and mortars made of metakaolin and hydrated lime (L-MK), which the metakaolin was obtained from the kaolin production waste, were assessed in their hardened state. Two curing conditions were considered: dry and moist environment; and three ages of curing (28, 90 and 180 days) were studied. Pastes were assessed by XRD and TG/DTG. In pastes according to the XRD and TG/DTG results, the main hydrated products found were strätlingite, in moist curing, and monocarboaluminate, in dry curing. Properties like flexural and compressive strengths, water absorbed capillarity and loss mass variation were studied in mortars. The results showed that mortars in dry curing presented lower strengths than one in moist curing. In moist curing mortars presented compressive strength values around 12 MPa and in dry curing this value reached 6 MPa. This fact indicate that the strätlingite maybe is responsible for the high strengths in mortars in moist curing when compares with the strengths of mortars cured in dry environment. Further the results showed that mortars in dry curing presented higher water absorbed and mass loss variation than mortars in moist curing.


2020 ◽  
Vol 236 ◽  
pp. 117520
Author(s):  
Penka I. Girginova ◽  
Cristina Galacho ◽  
Rosário Veiga ◽  
António Santos Silva ◽  
António Candeias

2012 ◽  
Vol 730-732 ◽  
pp. 617-622 ◽  
Author(s):  
Cristiana Gonilho-Pereira ◽  
Paulina Faria ◽  
Raul Fangueiro ◽  
Ana Martins ◽  
Pedro Vinagre ◽  
...  

In this paper an experimental work is presented which main objective is the evaluation of the influence of different percentages of waste fibrous materials usage on the performance of fiber-reinforced mortars. Moreover, the influence of binder type is evaluated. Therefore mortars were produced with two different binders – cement and powder hydrated lime. Mortars performance evaluation was carried out through flow table and plunger penetration consistency, dynamic modulus of elasticity, flexural and compressive strength, capillary absorption, drying index and adherence tests. The benefits revealed in some characteristics of both mortars by the use of waste fibers are discussed.


Sign in / Sign up

Export Citation Format

Share Document