Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers

2017 ◽  
Vol 151 ◽  
pp. 236-245 ◽  
Author(s):  
Meng Guo ◽  
Yiqiu Tan ◽  
Yue Hou ◽  
Linbing Wang ◽  
Yiqi Wang
2021 ◽  
pp. 32-44

The results of a study present the effect of new modified ingredients on the complex of properties of composite elastomeric materials. Methods for modifying mineral fillers have developed. It found that the introduction of modified ingredients into the composition of elastomeric compositions enhances the interfacial interaction at the “rubber-filler” interface and the formation of additional bonds between rubber macromolecules and functional groups, resulting in an improvement in the complex of properties of the compositions. New accelerators, activators for vulcanization of rubbers and plasticizers with stabilizing properties have proposed, and their optimal contents in the composition have determined.


2021 ◽  
Vol 1017 ◽  
pp. 81-90
Author(s):  
Mikhail S. Lebedev ◽  
Marina I. Kozhukhova ◽  
Evgeniy A. Yakovlev

Ultra-fine filler or mineral powder is the main mineral component responsible for structure formation in the bitumen-mineral system, therefore mineral and chemical composition, chemical reactivity, surface area, fineness, particle shape, porosity and density are the crucial parameters for structure formation of the composite. This work studied the effect of fineness and chemical and mineral composition of fillers on the structure of asphalt binder. It was demonstrated that an increase in surface area boosts porosity, and void content of the filler, but reduces the porous size. For carbonate fillers such as limestone and chalk with high fineness it was investigated that compaction applied to asphalt binder specimens showed very low water saturation. This can be explained by the film effect of water impermeable bitumen in the matrix and by small porous size with mostly close pores. An increase in surface area of silicate fillers improves the compaction of structure but cannot reach the same level of compaction degree demonstrated by the specimens with carbonate fillers. SEM analysis of microstructural characteristics for the asphalt binder showed that the incorporation of fine-fractioned chalk filler resulted in the formation of asphalt binder with high density and micro-and nanoporous matrix.


2022 ◽  
Vol 321 ◽  
pp. 126292
Author(s):  
Baodong Xing ◽  
Yubing Du ◽  
Chen Fang ◽  
Huadong Sun ◽  
Yuchao Lyu ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 464-476
Author(s):  
Bekhzod B. Yoqubov ◽  
◽  
Akhmadjon Ibadullaev ◽  
Dilnora Q. Yoqubova ◽  
Elmira U. Teshabaeva ◽  
...  

The aim of this work is to study the effect of new modified ingredients on the complex of properties of composite elastomeric materials. It was found that the introduction of modified ingredients into the composition of elastomeric compositions enhances interfacial interaction at the «rubber-filler» interface and the formation of additional bonds between rubber macromolecules and functional groups, as a result of which an improvement in the complex of properties of the compositions is observed. The introduction of modified carbon into the composition of elastomeric compositions enhances interfacial interaction at the «rubber-filler» interface and the formation of additional bonds between rubber macromolecules and functional groups of the oligomer, as a result of which an improvement in the complex of properties of the compositions is observed. The technology of purification of mineral fillers from metal oxides has been developed. A sufficiently high degree of purification by this method is due to the fact that in the process of temperature exposure at 950 K, iron ions from the paramagnetic state (d-form Fe2O3) pass into ferromagnetic (r-form Fe3O4). Feasibility and prospects of using modified fillers, both mineral and organic, in the formulations of rubber compounds for the production of various types of rubber products


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2019 ◽  
Vol 768 (3) ◽  
pp. 57-63
Author(s):  
A.A. ASKADSKII ◽  
◽  
A.V. MATSEEVICH ◽  
K.S. PIMINOVA ◽  
O.A. GORBACHEVA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document