FEM simulation and optimization on the elastic modulus and thermal expansion ratio of polymer-mineral composite

2018 ◽  
Vol 167 ◽  
pp. 524-535 ◽  
Author(s):  
Peiyao Sheng ◽  
Jizhi Zhang ◽  
Zhong Ji ◽  
Shizhao Wang
1991 ◽  
Vol 6 (7) ◽  
pp. 1498-1501 ◽  
Author(s):  
Paul A. Flinn

Since copper has some advantages relative to aluminum as an interconnection material, it is appropriate to investigate its mechanical properties in order to be prepared in advance for possible problems, such as the cracks and voids that have plagued aluminum interconnect systems. A model previously used to interpret the behavior of aluminum films proves to be, with minor modification, also applicable to copper. Although the thermal expansion of copper is closer to that of silicon and, consequently, the thermally induced strains are smaller, the much larger elastic modulus of copper results in substantially higher stresses. This has implications for the interaction of copper lines with dielectrics.


2002 ◽  
Vol 12 (9) ◽  
pp. 287-287
Author(s):  
V. Ya. Pokrovskii ◽  
A. V. Golovnya ◽  
P. M. Shadrin

An interferometer-based setup for measurements of length of needle-like samples is developed, and thermal expansion of o-TaS3 crystals is studied. Below the Peierls transition the temperature hysteresis of length L is observed, the width of the hysteresis loop $\delta L/L$ being up to $5\times 10^{-5}$. Curiously, $L(T)$ changes so that it is in front of its equilibrium value. The hysteresis loop couples with that of conductivity. With lowering T the charge-density waves' (CDW) elastic modulus grows and at 100 K becomes comparable with that of the lattice Yl. The results justify the assumption about the strain dependence of the CDW wave vector and clarify the nature of the anomalies of Yl which occur on the CDW depinning. In particular, Yl, is expected to show a strong drop in the static regime, if measured at sufficiently small sample elongation $(\delta L/L < 10^{ -5}) $.


2020 ◽  
Vol 4 (1) ◽  
pp. 19 ◽  
Author(s):  
Penchal Reddy Matli ◽  
Vyasaraj Manakari ◽  
Gururaj Parande ◽  
Manohar Reddy Mattli ◽  
Rana Abdul Shakoor ◽  
...  

In the present study, Ni50Ti50 (NiTi) particle reinforced aluminum nanocomposites were fabricated using microwave sintering and subsequently hot extrusion. The effect of NiTi (0, 0.5, 1.0, and 1.5 vol %) content on the microstructural, mechanical, thermal, and damping properties of the extruded Al-NiTi nanocomposites was studied. Compared to the unreinforced aluminum, hardness, ultimate compression/tensile strength and yield strength increased by 105%, 46%, 45%, and 41% while elongation and coefficient of thermal expansion (CTE) decreased by 49% and 22%, respectively. The fabricated Al-1.5 NiTi nanocomposite exhibited significantly higher damping capacity (3.23 × 10−4) and elastic modulus (78.48 ± 0.008 GPa) when compared to pure Al.


APL Materials ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 076105 ◽  
Author(s):  
Yuan Lu ◽  
Markus Reusch ◽  
Nicolas Kurz ◽  
Anli Ding ◽  
Tim Christoph ◽  
...  

2011 ◽  
Vol 211-212 ◽  
pp. 1226-1229
Author(s):  
Hai Ou Jing ◽  
Shu Hua Wang

In order to understand the changing tendency of thermal–expansion abilities of used sands in foundry, the four groups of quartz sands were measured in this paper. The influencing laws of baked-times and temperatures on the property of quartz sands were analyzed. And the test results showed that volume thermal-expansion ratio of quartz sands decreases with increasing of the baked-times.


2011 ◽  
Vol 335-336 ◽  
pp. 728-731
Author(s):  
Shu Bin Shen ◽  
Jing Long Bu ◽  
Li Xue Yu ◽  
Shu Long Liu ◽  
Zhi Fa Wang

Fused quartz granules (d50=19 μm) were used as raw material, and Si3N4-Nd2O3 (1:1, in mass) was used as additive with dosages of 1% (in mass, similarly hereinafter), 2% and 3%. Fused quartz ceramic materials were fabricated in reduction atmosphere at 1300 °C, 1350 °C and 1400 °C for 1 h. The apparent porosity, bending strength and thermal expansion ratios of the samples were studied and the samples were further analysed by means of XRD and SEM. The results showed that the sample sintered at each temperature with 3% Si3N4-Nd2O3 had the lowest apparent porosity, the highest bending strength and more compact microstructure. This indicated that 3% Si3N4-Nd2O3 was useful to the sintering of fused quartz ceramic materials. The results of XRD and thermal expansion ratio analysis showed that 3% Si3N4-Nd2O3 compound additive had better effect on inhibiting crystallization of the samples sintered at 1300 °C, 1350 °C and 1400 °C.


Sign in / Sign up

Export Citation Format

Share Document