Restrained early-age shrinkage cracking properties of high-performance concrete containing fly ash and ground granulated blast-furnace slag

2018 ◽  
Vol 191 ◽  
pp. 1-12 ◽  
Author(s):  
Lina Ma ◽  
Yanhua Zhao ◽  
Jinxin Gong
2013 ◽  
Vol 325-326 ◽  
pp. 71-74
Author(s):  
Yun Feng Li ◽  
Dong Sheng Zhang ◽  
Li Xu

The shrinkage cracking of concrete plays an important role to the accelerated deterioration and shortening the service life of concrete structures. The mineral admixture will be a perfect component of high performance concrete and its utilization will be a valuable resource for recycling. Early age cracking characteristics of concrete with compound admixtures, such as steel slag, blast furnace slag, fly ash, are studied in this paper using plate test method. The better anti-cracking performance of concrete will be realized when blast furnace slag replacing cement at 30%, steel slag and fly ash as the equal mixture components replacing cement at 30%, three kinds of admixtures replacing cement at 30% under the proper proportion.


2021 ◽  
Vol 11 (2) ◽  
pp. 830
Author(s):  
Katarzyna Konieczna ◽  
Karol Chilmon ◽  
Wioletta Jackiewicz-Rek

The main assumption of eco-efficient High-Performance Concrete (HPC) design is the reduction of Portland cement clinker content without negatively affecting the composite’s mechanical and durability properties. In this paper, three low-clinker HPC mixtures incorporating slag cement (CEM III/B as per EN 197-1) and Supplementary Cementitious Materials (SCMs)—Ground Granulated Blast Furnace Slag (GGBFS), Siliceous Fly Ash (SFA) and Silica Fume (SF)—were designed. The maximum amount of Portland cement clinker from CEM III/B varied from 64 to 116 kg in 1 m3 of concrete mix. The compressive strength of HPC at 2, 7, 14, 28, 56, 90 days, and 2 years after casting, as well as the modulus of elasticity on 2-year-old specimens, was tested. The depth of water penetration under pressure and internal frost resistance in freeze–thaw tests were evaluated after 56 days of curing. Additionally, the concrete pH value tests were performed. The microstructure of 2-year-old HPC specimens was analyzed using Scanning Electron Microscopy (SEM). The research proved that it is possible to obtain low-clinker High-Performance Concretes that reach compressive strength of 76–92 MPa after 28 days of curing, show high values of modulus of elasticity (49–52 GPa) as well as increased resistance to frost and water penetration under pressure.


2014 ◽  
Vol 627 ◽  
pp. 385-388 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Yong Il Jang ◽  
Hyun Do Yun ◽  
...  

Fly ash and blast furnace slag dumped not only pollutes environment, but also consumes landfills. With the aim of sustainable development, the isolated contribution of fly ash and blast furnace slag in concrete to the mechanical properties of frame concrete is investigated. An experimental study is conducted to investigate mechanical properties of high performance concrete. Test variables are the replacement levels for FA series (10%, 20% and 30%) and for BS series (10%, 30%, 50% and 70%) in place of part of cement. Compressive, splitting tensile strength, modulus of elasticity and flexural strength tests were carried out to evaluate the mechanical properties for up to 7days and 28 days. The mechanical properties of high performance concrete compared with predicted values by ACI 318-02 Code, EC 2-02, JSCE Code, KCI Code and proposed Eq.


2020 ◽  
Vol 184 ◽  
pp. 01088
Author(s):  
C Vivek Kumar ◽  
Patam Manisha ◽  
Pooja Sadula

Strength, ductility of structures differ primarily on appropriate detailing of. beam column joints need a vital role in the structural reliability of the structures given with appropriate stiffness and ultimate strength to maintain the loads transmitted from beam and column. Beam column joints defined as the reinforced concrete buildings, in which portion of columns and beams having their intersections. Although these forces greater than these are affected during earthquakes, joints are relentlessly damaged. As far as earthquake is affected, research on beam-column joint is essential. In HPC, these materials with admixtures are meticulously designated and proportioned to produce very high early, ultimate strengths and durability away from conventional concrete. The admixtures like flyash, silicafume, ground granulated blast furnace slag (GGBFS), which are combined with its strength and durability and boost its marketability as a natural friendly product. The most important purpose of the present study is to investigate the performance of high performance reinforced beam-column joints (replacement of cement with GGBFS). Ground granulated blast furnace GGBFS is employed as a partial replacement of cement with glass fibre and super plasticizer is applied to accomplish required workability. In this study, a evaluation of control specimen and specimen of beam column joint with 7.5% GGBFS and 0.3% glass fibre replacement intended as per IS 456:2000 and IS 13920:2016. Also, to ascertain the performance of beam-column joints subjected to monotonic loading for high performance concrete employing with Ground Granulated Blast Furnace Slag (GGBFS) and glass fibre.


2013 ◽  
Vol 372 ◽  
pp. 239-242
Author(s):  
Sun Woong Kim ◽  
Wan Shin Park ◽  
Jeong Eun Kim ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
...  

This paper addresses the results of an extensive experimental study on the compressive, splitting tensile strength modulus of elasticity in long-term. These tests were carried out to investigate the mechanical properties of HPC for 56 and 91days. In this work, High performance concrete was designed a water-binder ratio of 0.40. In addition, three different concrete mixes were used in these specimens. The results properties of HPC with fly Ash, blast furnace slag and silica fume were effective for compressive strength splitting tensile strength and modulus of elasticity improvement between 56 to 91 curing days.


2014 ◽  
Vol 600 ◽  
pp. 514-519
Author(s):  
Aissa Talah ◽  
F. Kharchi

This paper reports an experimental study of the influence of finely ground-granulated blast-furnace slag (GGBS) used as partial substitute for Portland cement (PC) on the mechanical properties and durability of high performance concretes. The analysis of the experimental results on concrete at 17.5% content of blast furnace slag with a fineness modulus of 8500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to water absorption and migration of chloride ions. On the basis of the experiments performed, it can be concluded that the GGBS is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).


Sign in / Sign up

Export Citation Format

Share Document