The impact of bio-oil as rejuvenator for aged asphalt binder

2019 ◽  
Vol 196 ◽  
pp. 134-143 ◽  
Author(s):  
Ran Zhang ◽  
Zhanping You ◽  
Hainian Wang ◽  
Mingxiao Ye ◽  
Yoke Khin Yap ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7080
Author(s):  
Xiaorui Zhang ◽  
Chao Han ◽  
Xinxing Zhou ◽  
Frédéric Otto ◽  
Fan Zhang

Soybean-derived bio-oil is one of the vegetable-based oils that is gaining the most interest for potential use in the rejuvenation of aged asphalt binders. This laboratory study was conducted to characterize and quantify the diffusion and rheological properties of bio-oil-rejuvenated aged asphalt binder (BRAA) using soybean oil. In the study, the chemical structure of the soybean oil was comparatively characterized using an element analyzer (EA), gel permeation chromatography (GPC), and a Fourier infrared (FTIR) spectrometer, respectively. Based on the chemical structure of the bio-oil, BRAA molecular models were built for computing the diffusion parameters using molecular dynamic simulations. Likewise, a dynamic shear rheometer (DSR) test device was used for measuring and quantifying the rheological properties of the aged asphalt binder rejuvenated with 0%, 1%, 2%, 3%, 4%, and 5% soybean oil, respectively. The laboratory test results indicate that bio-oil could potentially improve the diffusion coefficients and phase angle of the aged asphalt binder. Similarly, the corresponding decrease in the complex shear modulus has a positive effect on the low-temperature properties of BRAA. For a bio-oil dosage 4.0%, the diffusion coefficients of the BRAA components are 1.52 × 10−8, 1.33 × 10−8, 3.47 × 10−8, 4.82 × 10−8 and 3.92 × 10−8, respectively. Similarly, the corresponding reduction in the complex shear modulus from 1.27 × 107 Pa to 4.0 × 105 Pa suggests an improvement in the low-temperature properties of BRAA. Overall, the study contributes to the literature on the potential use of soybean-derived bio-oil as a rejuvenator of aged asphalt binders.


2021 ◽  
Vol 7 (3) ◽  
pp. 502-517
Author(s):  
Munder Bilema ◽  
Yusri Bin Aman ◽  
Norhidayah Abdul Hassan ◽  
Zaid Al-Saffar ◽  
Kabiru Ahmad ◽  
...  

High demand for asphalt binders in road construction verifies the need of finding alternative materials through asphalt pavement recycling. This paper investigated the impact of different rejuvenators on the performance of an aged asphalt binder. Virgin Olive oil, virgin cooking oil, waste cooking oil, virgin engine oil, and waste engine oil were added to a 30/40 penetration grade aged asphalt binder at a fixed oil content of 4% for all types. The wet method was used to blend the rejuvenators and aged asphalt binder. The physical, rheological, and chemical properties of the rejuvenated asphalt binder were evaluated using several laboratory tests which include penetration, softening point, bleeding, loss on heating, storage stability, penetration index, ductility, viscosity, dynamic shear rheometer, and Fourier transform infrared spectroscopy. The outcomes of the physical properties showed that the olive, waste, and virgin cooking rejuvenators can restore the aged asphalt binder to a penetration grade of 60/70. In contrast, the virgin and waste engine oil required a more quantity of oil to rejuvenate the aged asphalt binder. A sufficient amount of rejuvenator could regenerate the (G*/sin δ), (δ°), and (G*) for the aged asphalt binder. The addition of virgin olive and cooking oils in aged asphalt led to a rutting issue. No chemical reactions were observed with the addition of rejuvenators but they give an impact on reducing the oxidation level of the aged asphalt binder. As a result, further research should be performed on waste cooking oil given that it is inexpensive and provides excellent performance results. Doi: 10.28991/cej-2021-03091669 Full Text: PDF


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Wenli Wang ◽  
Yichen Liu ◽  
Yue Wang ◽  
Longfei Liu ◽  
Changwei Hu

The thermal degradation of lignin for value-added fuels and chemicals is important for environment improvement and sustainable development. The impact of pretreatment and catalysis of Ni(NO3)2 on the pyrolysis behavior of organsolv lignin were studied in the present work. Samples were pyrolyzed at 500 ∘C with an upward fixed bed, and the characteristics of bio-oil were determined. After pretreatment by Ni(NO3)2, the yield of monophenols increased from 23.3 wt.% to 30.2 wt.% in “Ni-washed” and decreased slightly from 23.3 wt.% to 20.3 wt.% in “Ni-unwashed”. Meanwhile, the selective formation of vinyl-monophenols was promoted in “Ni-unwashed”, which indicated that the existence of nickel species promoted the dehydration of C-OH and breakage of C-C in pyrolysis. In comparison with “Water”, HHV of bio-oil derived from “Ni-unwashed” slightly increased from 27.94 mJ/kg to 28.46 mJ/kg, suggesting that the lowering of oxygen content in bio-oil is associated with improved quality. Furthermore, the content of H2 in gas products dramatically increased from 2.0% to 7.6% and 17.1%, respectively.


Author(s):  
Peerzada Mosir Shah ◽  
Mohammad Shafi Mir

The purpose of this study aims at investigating the impact of multi-walled carbon nanotubes (MWCNT’s) on the properties of low viscosity grade asphalt binder. Asphalt binder with viscosity grade-10 is selected as the control binder and later it is modified with different percentages of MWCNT’s (0.5–2.5%). Penetration, softening point, ductility and rotational viscosity test were employed for evaluating the effect of MWCNT’s on basic physical properties of modified asphalt binder. Dynamic Shear Rheometer (DSR) is used for evaluating the rheological properties of the base and modified bitumen, for both aged and unaged bitumen. Based on the conventional and basic rheological tests, it was seen that the addition of MWCNT’s improved the high-temperature performance of modified bitumen. Multiple Stress Creep and Recovery (MSCR) test results revealed that the addition of MWCNT’s improved the creep and recovery of modified binders for both stress intensities (0.1 kPa and 3.2 kPa) which confirms that the modified binder is more rut resistant. Moreover, it was observed that there was a significant improvement in the aging resistance of the asphalt binder due to addition of MWCNTs. However low temperature performance of MWCNTs was not encouraging. Also, MWCNTs addition to asphalt binder was found to be stable under high-temperature storage condition. Overall, there is a significant amount of improvement using MWCNTs in the base asphalt binder.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1554 ◽  
Author(s):  
Pan Pan ◽  
Yi Kuang ◽  
Xiaodi Hu ◽  
Xiao Zhang

In this study, the aged asphalt binder and mixture were laboratory prepared through short-term ageing testing and long-term ageing testing. Firstly, the effect of rejuvenator on physical properties of aged asphalt binders was investigated. In addition, a series of laboratory tests were performed to evaluate the influence of ageing and rejuvenator content on the mechanical properties, durability and dynamic characteristics of asphalt mixtures. Physical test results of asphalt binder testified that rejuvenator used can efficiently recover the aged asphalt binder. However, the effect of ageing and rejuvenator content exhibits different trends depending on the physical property tests conducted. Moreover, artificially aged asphalt mixture with rejuvenator has better ability to resist moisture damage and ravelling. In addition, the ITSR value is more suitable to evaluate the moisture susceptibility for asphalt recycling. Although rejuvenator improves the thermal cracking resistance and fatigue property of aged asphalt mixture, rejuvenated mixture shows greater modulus and inferior ability to resist reflective cracking than the unaged mixture. Moreover, rejuvenated mixture shows less dependence on frequency at high temperature regions and stronger dependence at low temperature regions compared to unaged and long-term aged mixtures.


2017 ◽  
Vol 156 ◽  
pp. 574-583 ◽  
Author(s):  
Shenghua Wu ◽  
Weiguang Zhang ◽  
Shihui Shen ◽  
Xiaojun Li ◽  
Balasingam Muhunthan ◽  
...  

2013 ◽  
Vol 723 ◽  
pp. 670-677 ◽  
Author(s):  
Ping Sien Lin ◽  
Chi Wen Chang ◽  
Tung Lin Wu

This study was to perform the viscosity test of adding different ratios (from 10% to 40%) of three recycling agents (RAs), namely RA25, RA75 and RA250, to the reclaimed asphalt binder (RAB) containing a viscosity of 42800 poises. The purpose of the study was to determine the effects of various RAs on the viscosity of aged asphalt binders. The viscosity values were also estimated based on the recycling model of aged asphalt binder developed by authors and the equations developed by Arrhenius (1887), Grunberg and Nissan (1949) and Epps et al. (1980). The results show that there are significant variations in the viscosity of recycling asphalt binder when being added different ratios of RA. The estimated viscosity values computed by the recycling model of aged asphalt binder are closer to the tested results when compared with the equations developed by Arrhenius (1887), Grunberg and Nissan (1949) and Epps et al. (1980). Furthermore, the Recycling Index (RI) developed by the recycling model of aged asphalt binder can clearly and precisely reveal the recycling performance of different kinds of RAs. The Gmix from the equation developed by Grunberg and Nissan (1949) has an apparent effect on estimating the viscosity when adding RA to the RAB.


Sign in / Sign up

Export Citation Format

Share Document