Experimental investigations of fracture toughness and crack initiation in marble under different freezing and thermal cyclic loading

2019 ◽  
Vol 220 ◽  
pp. 340-352 ◽  
Author(s):  
Bijan Dehghani ◽  
Lohrasb Faramarzi
2006 ◽  
Vol 324-325 ◽  
pp. 1117-1122 ◽  
Author(s):  
Guo Cai Chai ◽  
Robert Lillbacka

Two phase metals during cyclic loading can suffer from non-uniform load or strain sharing between the phases due to elastic/plastic anisotropy. This can strongly influence the fatigue damage and crack initiation behavior. In this study, the fatigue damage and crack initiation behavior of an austenitic-ferritic duplex stainless steel with anneal/quenched and aged conditions has been studied by both experimental investigations and simulation using multi-scale material modeling. It was found, both experimentally and via simulations, that the material damage and crack initiation start in the ferrite phase in the material with the anneal/quenched condition and in either the ferrite or austenite phase in the material with the aged condition, mainly in the weakest phase if the deformation hardening is considered.


1990 ◽  
Vol 8 (2) ◽  
pp. 98-104 ◽  
Author(s):  
K. Bethge ◽  
D. Munz ◽  
J. Neumann

2021 ◽  
Author(s):  
S. Pothana ◽  
G. Wilkowski ◽  
S. Kalyanam ◽  
J. K. Hong ◽  
C. J. Sallaberry

Abstract A new approach was implemented to confirm the start of ductile tearing relative to assessments by other methods such as direct-current Electric Potential (d-c EP) method in coupon specimens. This approach was developed on the Key-Curve methodology by Ernst/Joyce and is similar to the ASTM E-1820 Load Normalization procedure used to determine J-R curves directly from load versus Load-Line Displacement (LLD) record of the test specimen. It is consistent with Deformation Plasticity relationships for fully plastic behavior. Using this Experimental Key-Curve method, crack initiation can be determined directly from load versus LLD data or load versus Crack-Mouth Opening Displacement (CMOD) obtained from a fracture test without the need for additional instrumentation required for crack initiation detection. It is based on the fact that plastic deformation of homogeneous metals at the crack tip follows a power-law function until the crack tearing initiates. Crack tearing initiation is determined at the point where the power-law fit to the load versus plastic part of CMOD or LLD curve deviates from the total experimental load versus plastic-CMOD or LLD curve. The procedure for fitting of the data requires some care to be exercised such that the fitted data is beyond the elastic region and early small-scale plastic region of the Load-CMOD or Load-LLD curve but include data before crack initiation. An iterative regression analysis was done to achieve this, which is shown in this paper. The iterative fitting in this region typically results with a coefficient of determination (R2) values that are greater than 0.990. This method can be either used in conjunction with other methods such as direct-current Electric Potential (d-c EP) or unloading-compliance methods as a secondary (or primary) confirmation of crack tearing initiation (and even for crack growth); or can be used alone when other methods cannot be used. Furthermore, when using instrumentation methods for determining crack-initiation such as d-c EP method in a fracture toughness test, it is good to have a secondary confirmation of the initiation point in case of instrumentation malfunction or high signal to noise ratio in the measured d-c EP signals. In addition, the Experimental Key-Curve procedure provides relatively smooth data for the fitting procedure, while unloading-compliance data when used to get small crack growth values frequently has significant variability, which is part of the reason that JIC by ASTM E1820 is determined using an offset with some growth past the very start of ductile tearing. In this work, the Experimental Key-Curve method had been successfully used to determine crack tearing initiation and demonstrate the applicability for different fracture toughness specimen geometries such as SEN(T), and C(T) specimens. In all the cases analyzed, the Experimental Key-Curve method gave consistent results that were in good agreement with other crack tearing initiation measuring method such as d-c EP but seemed to result in less scatter.


Author(s):  
K. Linga Murty ◽  
Chang-Sung Seok

Ferritic steels commonly used for pressure vessels and reactor supports in light water reactors (LWRs) exhibit dynamic strain aging (DSA) resulting in decreased ductility and toughness. In addition, recent work indicated decreased toughness during reverse-cyclic loading that has implications on reliability of these structures under seismic loading conditions. We summarize some of our recent work on these aspects along with synergistic effects, of interstitial impurity atoms (IIAs) and radiation induced point defects, that result in interesting beneficial effects of radiation exposure at appropriate temperature and strain-rate conditions. Radiation-defect interactions were investigated on pure iron, Si-killed mild steel, A533B, A516, A588 and other reactor support and vessel steels. In all cases, DSA is seen to result in decreased ductility accompanied by increased work-hardening parameter. In addition to mechanical property tests, fracture toughness is investigated on both A533B and A516 steels. While dips in fracture toughness are observed in A533B steel in the DSA region, A516 steel exhibited at best a plateau. The reasons could lie in the applied strain-rates; while J1c tests were performed on A533B steel using 3-point bend tests on Charpy type specimens, CT specimens were used for A516 steel. However, tensile and 3-point bend tests on similar grade A516 steel of different vintage did exhibit distinct drop in the energy to fracture. Load-displacement curves during J1c tests on CT specimens did show load drops in the DSA regime. The effect of load ratio (R) on J versus load-line displacement curves for A516 steel is investigated from +1 to −1 at a fixed normalized incremental plastic displacement of 0.1 (R = 1 corresponds to monotonic loading). We note that J-values are significantly reduced with decreasing load ratio. The work-hardening characteristics on the fracture surfaces were studied following monotonic and cyclic loading fracture tests along with the stress-field analyses. From the hardness and the ball-indentation tests, it was shown that decreased load ratio (R) leads to more strain hardening at the crack tip resulting in decreased fracture toughness. From the stress field analysis near the crack tip of a compact tension fracture toughness test specimen, a cycle of tensile and compressive loads is seen to result in tensile residual stresses (which did not exist at the crack tip before). These results are important to evaluations of flawed-structures under seismic loading conditions, i.e. Leak-Before-Break (LBB) and in-service flaw evaluation criteria where seismic loading is addressed. In addition, studies on fast vs total (thermal+fast) neutron spectra revealed unexpected results due to the influence of radiation exposure on source hardening component of the yield stress; grain-size of pure iron plays a significant role in these effects.


1993 ◽  
Vol 66 (4) ◽  
pp. 634-645
Author(s):  
N. Nakajima ◽  
J. L. Liu

Abstract The effect of gel on the fracture toughness of four PVC/NBR (50/50) blends was characterized by two different J- integral methods. Three of these blends are compatible blends with 33% acrylonitrile in NBRs, and the fourth with 21% acrylonitrile content, is an incompatible blend. Two types of gel are involved in this study microgels and macrogels. The J-integral methods are (1) conventional method proposed by Bagley and Landes and (2) crack initiation locus method proposed by Kim and Joe. The same load-displacement curves are used in both methods. However, the latter eliminates the energy dissipation away from the crack tip in the determination of Jc, while the former does not. Both methods produced almost the same results indicating that the energy dissipation away from the crack tip is negligible in these samples. The fracture toughness of a macrogel-containing blend is much greater than that of a microgel-containing blend, which, in turn, is only slightly greater than that of a gel-free blend. This implies that the two gel-containing blends have different fracture processes. The incompatible blend has the lowest fracture toughness due to weak interaction at the boundaries of the two phases.


Author(s):  
Piotr Bednarz ◽  
Jaroslaw Szwedowicz

The Haensel damage model correlates lifetime of a component until crack initiation to the dissipated and stored energy in the material during cyclic loading. The crack initiation is influenced by mean stresses. The Haensel damage model considers the mean stress effect by including compressive and tensile stresses in calculations of elastic strain energy during cyclic loading conditions. The goal of the paper is to extend the above model to predict crack propagation under large cyclic plasticity and non-proportional loading conditions. After voids initiation onset of necking, voids growth and linking takes place among them. During this process a mesocrack is created. This stage of fracture involves the same amount of released energy for new crack surface creation as dissipated energy for mesocrack initiation. The amount of dissipated and stored energy is related to the process zone size and to the number of cycles. Ilyushin’s postulate is used to calculate the amount of dissipated energy. In order to consider a contribution of tensile stresses only during loading to crack propagation, tensile/compressive split is performed for the stress tensor. One of the key drivers of this paper is to provide a straightforward engineering approach, which does not require explicit modelling of cracks. The proposed mathematical approach accounts for redistribution of stresses, strains and energy during crack propagation. This allows to approximate the observed effect of distribution of dissipated energy on the front of a crack tip. The developed approach is validated through FE (Finite Element) simulations of the Dowling and Begley experiment. The Haensel lifetime prediction of Dowling’s experiment is in good agreement with the experimental data and the explicit FE results. Finally, the proposed mathematical approach simplifies significantly the engineering effort for Nonlinear Fracture Mechanics lifetime prediction by avoiding the requirement to simulate real crack propagation using node base release methods, XFEM or remeshing procedures.


2003 ◽  
Vol 12 (4) ◽  
pp. 096369350301200 ◽  
Author(s):  
R. Ramesh Kumar ◽  
P.N. Dileep ◽  
S. Renjith ◽  
G. Venkateswara Rao

Intralaminar fracture toughness of a fibre-reinforced angle ply and cross ply laminates are generally obtained by testing compact tension specimen and theoretically predicted using the well-known MCCI approach. The crack initiation direction, which is treated as a branch direction for the theoretical prediction, is an apriori. A conservative estimation on the toughness value obtained by considering branch crack angle corresponding to each fibre orientation in a laminate shows a gross error with respect to test data. In the present study a new criterion for the prediction of crack initiation angle is arrived at based on Tsai-Hill minimum strain energy density criterion. This shows a very good agreement with test data available in literature on fracture toughness of various multilayered composites with large size cracks with a/w ≥ 0.3. It is interesting to note that in a multilayered composite a simple method of prediction in which crack initiation direction is assumed to be the fibre orientation that is close to the initial crack direction gives a good estimation of the intralaminar fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document