Effect of organic reagents on high temperature rheological characteristics of organic rectorite modified asphalt

2019 ◽  
Vol 227 ◽  
pp. 116624
Author(s):  
Meng Jia ◽  
Aimin Sha ◽  
Zengping Zhang ◽  
Jiange Li ◽  
Dongdong Yuan ◽  
...  
2011 ◽  
Vol 250-253 ◽  
pp. 703-706
Author(s):  
Bo Wen Guan ◽  
Shuan Fa Chen ◽  
Rui Xiong ◽  
Yan Ping Sheng ◽  
Li Li Ma

The rheological properties of brucite fiber asphalt mastics are studied by the Brookfield viscosity test in this paper. The results show that at 105°C and 120°C, brucite fiber asphalt mastics shows the characteristics of non-Newtonian fluid. At 135°C and 150°C, it shows the characteristics of Newtonian fluid gradually. When the temperature is higher than 150°C, the asphalt mastics has fully manifested the characteristics of Newtonian fluid. The viscosity increases with the increasing of the dosage of brucite fiber. The value of ZSV increases with the increasing of the dosage of brucite fiber. According to the change law of ZSV, the anti-rutting performance of asphalt mastics is improved by the addition of brucite fiber.


2021 ◽  
Vol 871 ◽  
pp. 371-378
Author(s):  
Chun Fa Ouyang ◽  
Chun Ye Xu ◽  
Qun Gao ◽  
Wei Li Xue ◽  
Wei Gang Yang ◽  
...  

Ethylene-acrylic acid copolymer (EAA) has been demonstrated to be a suitable additive for modifying the properties of asphalt. EAA mixed with metal hydroxides/oxides form EAA-M ionomers, which increase the polarity of EAA, improving its adhesive properties and affecting its mechanical and rheological characteristics. The present work investigates the mechanical and rheological characteristics of asphalt modified by EAA in conjunction with either Ca (OH)2, NaOH, or ZnO. The high-temperature properties of the modified asphalts, including the softening point, and needle penetration, were evaluated. Rheological characteristics of modified asphalts were investigated by rotary rheometer. Moreover, the storage stability at high temperature, morphology and chemical structure were also analyzed. Results indicate that a 4wt% EAA-M ionomer concentration in the base asphalt is adequate for providing the enhanced properties studied. For an equivalent concentration of EAA, the properties of modified asphalts were affected by very small additions of the metal hydroxides/oxides. The best overall mechanical and rheological performance was obtained for EAA-Ca modified asphalt with 4wt% EAA and 2.5wt‰ Ca (OH)2. EAA-Zn modified asphalt provided the most stable high-temperature storage. Compared with 6wt% pure EAA-modified asphalt, which is not stable, the EAA-Zn modified asphalt (2.7wt‰ ZnO) demonstrated reasonable high-temperature storage stability. Compared with asphalt modified with 6wt% pure EAA, the softening point increased from 55.81 °C to 58.05 °C with the addition of 2.7wt‰ NaOH. However, while the mechanical and rheological properties of EAA-Na modified asphalt were very good, its high-temperature storage stability due to the strong reactivity of NaOH, which led to the crosslinking of EAA-Na ionomers, making it difficult to disperse.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1427
Author(s):  
Xiaoming Wu ◽  
Chichun Hu

Utilization of waste corn stalks (CS) has seized extensive attention due to high annual output and hazardous impact of piling aside or direct combustion on environment. However, previously there has been a lot of emphasis on improvement of its energy efficiency as solid fuel while limited investigations are available which explore the possibility of applying corn stalks as performance enhancer in asphalt binder. The purpose of this study is to examine the potential of employing hydrochar as modifiers in asphalt binder by a series of experimental tests. In this study, two hydrochar were produced from corn stalks by a novel process called hydrothermal carbonization at a different reaction temperature. The two hydrochar and their responding hydrochar-modified asphalt (HCMA) were tested by chemical and rheological tests. Chemical analysis detected the interaction between hydrochar and binder factions, resulting in poor compatibility but satisfying anti-aging property. Even though hydrochar increased the viscosity of bitumen, implying worse workability, and caused poor storage stability, ameliorated performance of asphalt binder at high temperature by incorporating hydrochar was verified by various criteria such as higher performance grade (PG) failure temperature and lower non-recoverable creep compliance (Jnr). Moreover, higher reaction temperature makes hydrochar’s particles smaller and more homogeneous, which results in slightly lower enhanced high temperature performance, more satisfying workability, better storage stability, and greater anti-aging effect of hydrochar-modified asphalt. Eventually, this study provided a promising win-win solution to environment problems concerning corn stalk treatment and shortage of asphalt binder. Further exploration of methods to improve HCMA’s storage stability, real-scale corroboration on trial section and life cycle assessment of asphalt pavement containing hydrochar modifiers will be followed in the future.


Author(s):  
Yueqiong Wu ◽  
Zhongyang Luo ◽  
Hong Yin ◽  
Tao Wang

Since the surfactant can form rod-like micelles or even cross-link structures, viscoelastic surfactant (VES) fluid has unique rheological characteristics. The demerits of VES fluids have been proven after being applied as the fracturing fluid for several years. However, the fluid has high fluid loss and a low viscosity at high temperature, which limits the application to hydraulic fracturing. This paper focuses on the VES fluid mixed with nanoparticles which should be an effective way to maintain the viscosity at high temperature and high shear rate. The experiments were based on preparation of uniform and stable nanocolloids, which utilize Microfluidizer high shear fluid processor. Dynamic light scattering and microscopic methods are employed to investigate the stability and micro-structure of the VES fluid. The effects of temperature, shear rate and volume fraction of the nanoparticles on rheology of VES were studied. The SiO2 nanoparticles could significantly improve the rheological performance of VES fluid, although the rheological performance at the temperature over 90 °C needs to be enhanced. The mechanisms of interactions between nanoparticles and micelles are also discussed later in the paper. At the end, the potential of VES fluid mixed with nanoparticles during application in fracturing process was discussed.


2014 ◽  
Vol 941-944 ◽  
pp. 324-328 ◽  
Author(s):  
Zhong Ping Yao ◽  
Meng Li ◽  
Wei Liu ◽  
Zhen Bei Chen ◽  
Rong Hui Zhang

Use polyurethane rubber composite modified asphalt.Through the Marshall test and rutting test, test of polyurethane rubber asphalt mixture high temperature stability, low temperature crack resistance and water damage resistance, verify the composite modification advantages.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document