Effects of curing time and ice-to-water ratio on performance of cemented paste backfill containing ice slag

2019 ◽  
Vol 228 ◽  
pp. 116639 ◽  
Author(s):  
Lang Liu ◽  
Chao Zhu ◽  
Chongchong Qi ◽  
Mei Wang ◽  
Chao Huan ◽  
...  
2014 ◽  
Vol 898 ◽  
pp. 383-386 ◽  
Author(s):  
Chun Lei Zhang ◽  
Shun Cai Wang ◽  
Fan Lu Min

Cemented paste backfill method has been widely used in many modern mines throughout the world due to the increasingly stringent environmental regulations and short of disposal land. This study presents experimental results on the use of Portland cement in the solidification of Pb-Zn tailings in China. Test results show UCS strength increase lineally with cement content, tailings concentration, and curing time, respectively. There exist a minimum cement content and tailings concentration to produce obvious strength. The fluidity decrease quickly with cement proportion and tailings concentration, under the satisfying of a minimum pumping fluidity, the increase of tailings concentration can effectively reduce the cement consumption so as to decrease the treatment cost.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chongchun Xiao ◽  
Xinmin Wang ◽  
Qiusong Chen ◽  
Feng Bin ◽  
Yihan Wang ◽  
...  

The cemented paste backfill (CPB) technology has been successfully used for the recycling of mine tailings all around the world. However, its application in coal mines is limited due to the lack of mine tailings that can work as aggregates. In this work, the feasibility of using silts from the Yellow River silts (YRS) as aggregates in CPB was investigated. Cementitious materials were selected to be the ordinary Portland cement (OPC), OPC + coal gangue (CG), and OPC + coal fly ash (CFA). A large number of lab experiments were conducted to investigate the unconfined compressive strength (UCS) of CPB samples. After the discussion of the experimental results, a dataset was prepared after data collection and processing. Deep neural network (DNN) was employed to predict the UCS of CPB from its influencing variables, namely, the proportion of OPC, CG, CFA, and YS, the solids content, and the curing time. The results show the following: (i) The solid content, cement content (cement/sand ratio), and curing time present positive correlation with UCS. The CG can be used as a kind of OPC substitute, while adding CFA increases the UCS of CPB significantly. (ii) The optimum training set size was 80% and the number of runs was 36 to obtain the converged results. (iii) GA was efficient at the DNN architecture tuning with the optimum DNN architecture being found at the 17th iteration. (iv) The optimum DNN had an excellent performance on the UCS prediction of silt-based CPB (correlation coefficient was 0.97 on the training set and 0.99 on the testing set). (v) The curing time, the CFA proportion, and the solids content were the most significant input variables for the silt-based CPB and all of them were positively correlated with the UCS.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Juanrong Zheng ◽  
Lijie Guo ◽  
Zhenbo Zhao

This study presents the effect of calcined hard kaolin (CHK) as replacement (15–50 wt.%) to Portland cement (PC) on the strength development of cemented paste backfill (CPB) of fine tailings containing sulphide. PC is used as binder at 20 wt.% dosage. The results show that CPB sample containing 30 wt.% CHK replacements produces the desired strength and durability (i.e., 26.1% increase in strength over the curing period between 28 d and 360 d). CPB without CHK does not produce the desired strength and durability (i.e., 32.8% losses in strength over the curing period between 90 d and 360 d). The quantity of expansive gypsum of CPB containing 30 wt.% CHK is obviously less than that of CPB without CHK. The porosity of the fine pore for pore diameter < 0.3 μm is obviously higher in CPB containing 30 wt.% CHK than in CPB without CHK, regardless of curing time. It can be concluded that CHK can be suitably exploited for CPB of fine tailings with sulphide to improve the strength and stability in short and long terms.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8499
Author(s):  
Wen He ◽  
Changsong Zheng ◽  
Shenhai Li ◽  
Wenfang Shi ◽  
Kui Zhao

The strength of cemented paste backfill (CPB) directly affects mining safety and progress. At present, in-situ backfill strength is obtained by conducting uniaxial compression tests on backfill core samples. At the same time, it is time-consuming, and the integrity of samples cannot be guaranteed. Therefore guided wave technique as a nondestructive inspection method is proposed for the strength development monitoring of cemented paste backfill. In this paper, the acoustic parameters of guided wave propagation in the different cement-tailings ratios (1:4, 1:8) and different curing times (within 42 d) of CPBs were measured. Combined with the uniaxial compression strength of CPB, relationships between CPB strength and the guided wave acoustic parameters were established. Results indicate that with the increase of backfill curing time, the guided wave velocity decreases sharply at first; on the contrary, attenuation of guided waves increases dramatically. Finally, both velocity and attenuation tend to be stable. When the CPB strength increases with curing time, guided wave velocity shows an exponentially decreasing trend, while the guided wave attenuation shows an exponentially increasing trend with the increase of the CPB strength. Based on the relationship curves between CPB strength and guided wave velocity and attenuation, the guided wave technique in monitoring the strength development of CPB proves feasible.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Andrew N. Pan ◽  
Murray W. F. Grabinsky ◽  
Lijie Guo

Cemented paste backfill (CPB) plays an important role in the mining industry due to safety, cost efficiency, and environmental benefits. Studies on CPB have improved the design and application of paste backfill in underground mines. Direct shear is one of the most fundamental parameters for assessing backfill strength. This study harnesses direct shear tests to explore the low confining stress behavior of CPB. We perform all the tests in a standard apparatus on the combination of three binder contents of 4.2%, 6.9%, and 9.7% CPB with four curing times of 3, 7, 14, and 28 days, respectively. The applied confining stress levels vary in a range according to the in situ regime. Results are presented by strength envelope, stress-strain property, and shear strength with curing time and binder content. The data suggest that the shear strength follows the Mohr–Coulomb envelope in which the shear strength and behavior are time and binder content dependent. In addition, the results show that shear strength is strongly related to the binder content than the curing time, namely, the higher the degree of binder hydration, the higher the cementation binding force between CPBs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chen Hou ◽  
Liujun Yang ◽  
Lei Li ◽  
Baoxu Yan

The clarification of the variation on the strength of the cemented paste backfill (CPB) under the coupling of multi-factor is the foundation of the CPB design of the mine. In this article, the physical and mechanical properties of the CPB under the coupling effect of curing time, solid content, and binder content were experimentally and theoretically investigated. The results show that 1) the increase in binder content can effectively increase the later strength of CPB. 2) A sensitivity parameter considering the span of multi-factor was constructed, indicating that the curing time has the greatest impact on the uniaxial compressive strength (UCS), and the variation in solid content has the least impact on it, which can be verified by the stress–strain curves. 3) Curing time and binder content can effectively change the stress evolution, which is reflected in reducing the strain corresponding to the peak stress, enhancing the characteristics of the peak stress and increasing stress drop. The results of this study aim to explain the essence of the influence of each factor on the mechanical behavior of CPB in the view of stress–strain evolution, which will help to better understand the mechanical characteristics of CPB and quantify the sensitivity of the mechanical properties to various factors.


Sign in / Sign up

Export Citation Format

Share Document