Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt

2020 ◽  
Vol 235 ◽  
pp. 117517 ◽  
Author(s):  
Chengduo Qian ◽  
Weiyu Fan ◽  
Guoming Yang ◽  
Ling Han ◽  
Baodong Xing ◽  
...  
2018 ◽  
Vol 199 ◽  
pp. 11002
Author(s):  
Kudzai Mushunje ◽  
Mike Otieno ◽  
Yunus Ballim

This paper presents results of a study into the effects of truck tyre crumb rubber particle size, as fine aggregate, on the compressive strength, shrinkage and creep behaviour of structural rubberised concrete. The study is motivated by a growing interest in the use of concrete with waste tyre rubber particles, rubberised concrete, for structural applications. Three tyre crumb rubber sizes (2.36, 1.18 and 0.425 mm) were used to replace 10% by volume of fine mineral aggregates to produce concrete with a target strength of 30 MPa. The concrete was cast water-cured for 28 days and tested for shrinkage and creep for 180 days. Half of the shrinkage and creep samples were sealed with a bitumen seal to prevent drying during testing. Results show a general a decrease in compressive strength with reduction in crumb rubber size. The strength decreases by 22%, 23% and 27% for the 2.36, 1.18 and 0.425 mm mix respectively. Preliminary results show a general increase in both shrinkage and creep deformations in both drying and sealed conditions. The observed increases were checked against the limits provided in design codes to assess the applicability of the material for structural purposes.


2019 ◽  
Vol 799 ◽  
pp. 148-152 ◽  
Author(s):  
Vjaceslavs Lapkovskis ◽  
Viktors Mironovs ◽  
Kristine Irtiseva ◽  
Dmitri Goljandin

A proper recycling and secondary reuse of end-of-life car tires (ELTs) remain an important issue for many regions. Devulcanised crumb rubber as a product of ELT recycling could be used for very different applications, including site remediation by spilled oil products. In current paper a development of new bio-based composite material containing devulcanised crumb rubber and cenospheres is suggested. Designed bio-based composite can be used as a oil spill adsorbent, material for civil engineering, and as a raw material for further modification by introduction of ferromagnetic components. Homogenised peat with peat content 14.0 ± 1.5 wt%, particle size 0.01 – 0.5 mm used as a natural bio-based binder. Devulcanised crumb rubber particle size 1.0 – 4.0 mm was used as a porous substrate. Designed compositions contained 5, 10, 15, 20 wt% (before drying) of devulcanised crumb rubber. Cenospheres have duplex function for designed composite: lightweight additive that makes final product floatable, and at the same time minimises shrinkage of dried product. It was found that devulcanised crumb rubber reduces density of final composite and adding open porosity. Developed bio-based composites could be manufactured in granules by drum granulation technique for further environmental applications. Formability and apparent density of bio-based composite are studied.


2011 ◽  
Vol 99-100 ◽  
pp. 955-959 ◽  
Author(s):  
Wei Dong Cao ◽  
Shu Tang Liu ◽  
Xin Zhuang Cui ◽  
Xiao Qing Yu

Effects of crumb rubber of different particle sizes (20mesh, 40mesh, 60mesh, 80mesh and120mesh) and contents (10%, 15% and 20% by weight of the total of CRM asphalt) on the properties of CRM asphalt and change rule of performance of CRM asphalt with reaction temperature and time were studied in laboratory. The results indicate that CRM asphalt has the best performance when the particle size of crumb rubber used is 80 mesh and the content is 15%. The performance of CRM asphalt is strongly depended on reaction temperature and time. When reaction temperature is higher than 200°C and time more than 60 minutes, the viscosity of CRM asphalt significantly decline with reaction temperature rising and time delaying. The performance of CRM asphalt starts aging when reaction time more than 4 hours at high temperature. Based on test results, some suggestions for production and application of CRM asphalt are put forward.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohd Rasdan Ibrahim ◽  
Herda Yati Katman ◽  
Mohamed Rehan Karim ◽  
Suhana Koting ◽  
Nuha S. Mashaan

The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2020 ◽  
Vol 259 ◽  
pp. 119662 ◽  
Author(s):  
Israel Rodríguez-Fernández ◽  
Farrokh Tarpoudi Baheri ◽  
Maria Chiara Cavalli ◽  
Lily D. Poulikakos ◽  
Moises Bueno

2004 ◽  
Vol 16 (1) ◽  
pp. 45-53 ◽  
Author(s):  
S. K. Palit ◽  
K. Sudhakar Reddy ◽  
B. B. Pandey

Sign in / Sign up

Export Citation Format

Share Document