scholarly journals Partial replacement of conventional fine aggregate with crumb tyre rubber in structural concrete – effect of particle size on compressive strength and time dependent deformations

2018 ◽  
Vol 199 ◽  
pp. 11002
Author(s):  
Kudzai Mushunje ◽  
Mike Otieno ◽  
Yunus Ballim

This paper presents results of a study into the effects of truck tyre crumb rubber particle size, as fine aggregate, on the compressive strength, shrinkage and creep behaviour of structural rubberised concrete. The study is motivated by a growing interest in the use of concrete with waste tyre rubber particles, rubberised concrete, for structural applications. Three tyre crumb rubber sizes (2.36, 1.18 and 0.425 mm) were used to replace 10% by volume of fine mineral aggregates to produce concrete with a target strength of 30 MPa. The concrete was cast water-cured for 28 days and tested for shrinkage and creep for 180 days. Half of the shrinkage and creep samples were sealed with a bitumen seal to prevent drying during testing. Results show a general a decrease in compressive strength with reduction in crumb rubber size. The strength decreases by 22%, 23% and 27% for the 2.36, 1.18 and 0.425 mm mix respectively. Preliminary results show a general increase in both shrinkage and creep deformations in both drying and sealed conditions. The observed increases were checked against the limits provided in design codes to assess the applicability of the material for structural purposes.

Author(s):  
Wesam Salah Alaloul ◽  
Muhammad Ali Musarat ◽  
Sani Haruna ◽  
Bassam Tayeh ◽  
Muhammad Nurzahin Bin Norizan

This research has been conducted where the focus is on the chemical attack towards the Engineered Cementitious Composite (ECC) containing a high volume of the crumb rubber in terms of durability, behaviour, and comparison with conventional concrete. Two variables have been considered in developing rubberized ECC mixtures, i.e. the amount of crumb rubber as a replacement to fine aggregate by volume of 0-30% and PVA fibres by volume of 0-2% to cementitious materials. The resistance properties of ECC incorporating crumb rubber were investigated for 13 different variable combinations developed by Response Surface Methodology (RSM). The experimental results revealed that the presence of crumb rubber in the ECC matrix enhanced the resistance of the ECC in both acidic and sulphate environments. It was also revealed that by incorporating 15% of crumb rubber, the loss of compressive strength significantly reduced from 38% to 15%


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 488
Author(s):  
Sylvia Kelechi ◽  
Musa Adamu ◽  
Abubakar Mohammed ◽  
Yasser Ibrahim ◽  
Ifeyinwa Obianyo

Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3516
Author(s):  
Bashar S. Mohammed ◽  
Lee Yin Yen ◽  
Sani Haruna ◽  
Michael Lim Seng Huat ◽  
Isyaka Abdulkadir ◽  
...  

This paper reports the findings of the effect of elevated temperature on the compressive strength and durability properties of crumb rubber engineered cementitious composite (CR-ECC). The CR-ECC has been tested for its compressive strength and chemical resistance test against acid and sulphate attack. Different proportions of crumb rubber (CR) in partial replacement to the fine aggregate and polyvinyl alcohol (PVA) fiber have been utilized from 0 to 5% and 0 to 2%. The experiments were designed based on a central composite design (CCD) technique of response surface methodology (RSM). After 28 days curing, the samples were preconditioned and exposed to high temperatures of 100 °C, 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C for one hour. Although the residual compressive strength of CR-ECC was negatively affected by elevated temperature, no explosive spalling was noticed for all mixes, even at 1000 °C. Results indicated that CR-ECC experiences slight weight gain and a reduction in strength when exposed to the acidic environment. Due to the reduced permeability, CR-ECC experienced less effect when in sulphate environment. The response models were generated and validated by analysis of variance (ANOVA). The difference between adjusted R-squared and predicted R-squared values for each model was less than 0.2, and they possess at least a 95% level of confidence.


Author(s):  
Divesh Sharma

In this review article, the usage of bitumen, sisal fiber and the sisal fiber for improving the strength parameters of concrete is discussed in detail. Numerous research studies related to the usage of bitumen, sisal fiber and stone dust are studied in detail to determine the results and outcome out of it. Previous research works showed that all, these materials were enhancing the strength and durability aspects of the concrete and depending upon the research studies certain outcomes has been drawn which are as follows. The studies related to the usage of the bitumen or asphalt in concrete so as to produce bituminous concrete or asphaltic concrete, the previous research works conclude that the maximum strength was attained at 5 percent usage of the bitumen and after further usage the general compressive strength of the concrete starts declining. The previous studies related to the usage of the sisal fiber showed that with the usage of the sisal fiber in the concrete, the strength aspects of concrete were improving and the maximum strength was obtained at 1.5 percent usage of the sisal fiber and after his the strength starts declining. Further the studies related to the usage of the stone dust showed that with the usage of stone dust as partial replacement of the natural fine aggregate the compressive strength of the concrete was improving and it was conclude that with the increase in the percentage of the stone dust, the compressive strength of the concrete was increasing.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


Sign in / Sign up

Export Citation Format

Share Document