Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation

2020 ◽  
Vol 255 ◽  
pp. 119354 ◽  
Author(s):  
Zhengwu Long ◽  
Lingyun You ◽  
Xianqiong Tang ◽  
Wenbo Ma ◽  
Yanhuai Ding ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1573 ◽  
Author(s):  
Jin Yang ◽  
Can Weng ◽  
Jun Lai ◽  
Tao Ding ◽  
Hao Wang

In micro-injection molding, the interaction between the polymer and the mold insert has an important effect on demolding quality of nanostructure. An all-atom molecular dynamics simulation method was performed to study the effect of nanostructure shape, interfacial adhesion energy, and mold insert material on demolding quality of nanostructures. The deformation behaviors of nanostructures were analyzed by calculating the non-bonded interaction energies, the density distributions, the radii of gyration, the potential energies, and the snapshots of the demolding stage. The nanostructure shape had a direct impact on demolding quality. When the contact areas were the same, the nanostructure shape did not affect the non-bonded interaction energy at PP-Ni interface. During the demolding process, the radii of gyration of molecular chains were greatly increased, and the overall density was decreased significantly. After assuming that the mold insert surface was coated with an anti-stick coating, the surface burrs, the necking, and the stretching of nanostructures were significantly reduced after demolding. The deformation of nanostructures in the Ni and Cu mold inserts were more serious than that of the Al2O3 and Si mold inserts. In general, this study would provide theoretical guidance for the design of nanostructure shape and the selection of mold insert material.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1658
Author(s):  
Caihua Yu ◽  
Kui Hu ◽  
Qilin Yang ◽  
Dandan Wang ◽  
Wengang Zhang ◽  
...  

Carbon nanotubes (CNTs) can improve the storage properties of modified asphalt by enhancing the interfacial adhesion of recycled polyethylene (RPE) and base asphalt. In this study, the interaction of CNT/RPE asphalt was investigated using molecular dynamics simulation. The base asphalt was examined using a 12-component molecular model and verified by assessing the following properties: its four-component content, elemental contents, radial distribution function (RDF) and glass transition temperature. Then, the adhesion properties at the interface of the CNT/RPE-modified asphalt molecules were studied by measuring binding energy. The molecular structural stability of CNTs at the interface between RPE and asphalt molecules was analyzed through the relative concentration distribution. The motion of molecules in the modified asphalt was studied in terms of the mean square displacement (MSD) and diffusion coefficient. The results showed that CNTs improved the binding energy between RPE and base asphalt. CNTs not only weakened the repulsion of RPE with asphaltenes and resins, but also promoted the interaction of RPE with light components, which facilitated the compatibility of RPE with the base asphalt. The change in the interaction affected the molecular motion, and the molecular diffusion coefficient in the CNT/RPE-modified asphalt system was significantly smaller than that of RPE-modified asphalt. Moreover, the distribution of the asphaltene component was promoted by CNTs, resulting in the enhancement of the storage stability of RPE-modified asphalt. The property indexes indicated that the storage stability was significantly improved by CNTs, and better viscoelastic properties were also observed. Our research provides a foundation for the application of RPE in pavement engineering.


Sign in / Sign up

Export Citation Format

Share Document