Effects of surface texture and its mineral composition on interfacial behavior between asphalt binder and coarse aggregate

2020 ◽  
Vol 262 ◽  
pp. 120869
Author(s):  
Ponan Feng ◽  
Hainian Wang ◽  
Heyang Ding ◽  
Jinkun Xiao ◽  
Marwa Hassan
Author(s):  
Tongyan Pan ◽  
Erol Tutumluer ◽  
Samuel H. Carpenter

The resilient modulus measured in the indirect tensile mode according to ASTM D 4123 reflects effectively the elastic properties of asphalt mixtures under repeated load. The coarse aggregate morphology quantified by angularity and surface texture properties affects resilient modulus of asphalt mixes; however, the relationship is not yet well understood because of the lack of quantitative measurement of coarse aggregate morphology. This paper presents findings of a laboratory study aimed at investigating the effects of the material properties of the major component on the resilient modulus of asphalt mixes, with the coarse aggregate morphology considered as the principal factor. With modulus tests performed at a temperature of 25°C, using coarse aggregates with more irregular morphologies substantially improved the resilient modulus of asphalt mixtures. An imaging-based angularity index was found to be more closely related to the resilient modulus than an imaging-based surface texture index, as indicated by a higher value of the correlation coefficient. The stiffness of the asphalt binder also had a strong influence on modulus. When the resilient modulus data were grouped on the basis of binder stiffnesses, the agreement between the coarse aggregate morphology and the resilient modulus was significantly improved in each group. Although the changes in aggregate gradation did not significantly affect the relationship between the coarse aggregate morphology and the resilient modulus, decreasing the nominal maximum aggregate size from 19 mm to 9.5 mm indicated an increasing positive influence of aggregate morphology on the resilient modulus of asphalt mixes.


Author(s):  
Hasan M. Faisal ◽  
Zafrul Hakim Khan ◽  
Rafiqul Tarefder

Asphalt concrete (AC) consists of asphalt binder and aggregate. Aggregate consists of: coarse aggregate and fines. Asphalt binder creates a coating or film around the aggregate, which is defined as the binder phase of AC. Fines are believed to be trapped inside an asphalt film or mixed with asphalt binder, creating a composite material called mastic. Thus, AC has three phases: mastic, asphalt film binder, and coarse aggregate. All these phases play major roles in performance of AC. Researchers have performed various tests on asphalt binder at micro scale to understand the macro scale behavior of AC. However, test methods developed and performed on binders, to this day, are mostly rheological shear and bending beam tests. No studies have been conducted on the compression stiffness or modulus and hardness of and binder, rather than shear and binders stiffness. In addition, the existing tests used in the asphalt area cannot be performed on binder and mastic while they are an integral part of AC. Nanoindentation tests can be performed on aggregate and asphalt binder while they are integral parts of AC. Because, in nanoindentation test, a nanometer size tip, which is smaller than binder film thickness as well as other phases. In the study, Performance Grade (PG) 64–28 was used for the study, same binder had been used afterwards to characterize asphalt and AC. A loading rate of 0.005 mN/sec, a dwell time of 200 sec and a maximum load 0.055 mN were employed in the study. In the current study 20 indentations were done on the asphalt binder sample and 100 indentations were done on AC sample, due to heterogeneity of the sample. However, to identify a specific phase in AC sample, the current study adopts the depth range technique for as same loading protocol. The depth rage of binder phase was acquired by independent indentation on same asphalt binder sample. As, asphalt is known to be a viscoelastic material that exhibits creep behavior, the creep compliance of asphalt binder was used for validation of the depth range assumption. The validation of phase identification was done by comparing the asphalt binder phase creep response while they are integral part of AC with creep response of independent asphalt binder sample under nanoindenter. The comparison shows depth resolution technique can successfully identify the binder phase of AC.


2021 ◽  
Vol 6 (1) ◽  
pp. 10-19
Author(s):  
Muhammad Riski ◽  
Febrina Dian Kurniasari ◽  
Bunyamin

In general, aggregates consist of Natural Aggregates (NA) and Artificial Aggregates (AA). Artificial aggregates, such as Crushed Stone (CS), are aggregates produced through the crusher industry which has a rough and angular surface so that it has excellent adhesion to asphalt. Meanwhile, NA is an aggregate produced from a river which has a smooth and large hollow surface texture. The cost for AA is very expensive when compared to NA, so it is necessary to experiment with mixing NA and AA to minimize the use of AA. NA are obtained from Sungai Jalin, Jantho City District, Aceh Besar District. The method used refers to the specification of Bina Marga 2010 Revision four (2018) and the Indonesian National Standard (SNI). The purpose of this study was to see the effect of the combination of NA and AA as a substitute for coarse aggregate on the AC-WC concrete asphalt layer. The specimens used were 66 specimens with substitution of NA and AA into the asphalt layer were 0% NA: 100% AA, 25% NA: 75% AA, 50% NA: 50% AA, 75% NA: 25% AA, 100% NA : 0% AA. Based on the research results, the best value for the optimum marshall parameter is the substitution of 25% AA: 75% BP at asphalt content of 5.00%, the stability value is 1492.37kg with a VIM value of 3.69%, VMA 16.17%, VFA 77.88% and MQ 573.87kg / mm which have met the requirements of the 2010 Revision four (2018) Bina Marga specification.


2000 ◽  
Vol 28 (2) ◽  
pp. 77 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
MS Hossain ◽  
F Parker ◽  
PS Kandhal

2019 ◽  
Vol 2 (2) ◽  
pp. 214
Author(s):  
Faisal Abdul Yusuf ◽  
Ahmad Ridwan ◽  
Yosef Cahyo Setianto Poernomo

Asphalt Concrete (Hotmix) is a mixture of coarse aggregate, fine aggregate, and filler (filler) with asphalt binder in high-temperature conditions (heat) with a composition that is examined and regulated by technical specifications. In this research, concrete asphalt mixture was added with dolomite powder as a  mixture in filler to be an alternative material for portland cement filler mixture to minimize the price of portal and cement, which is increasingly expensive, and brantas sand as fine aggregate to study and determine the effect of dolomite powder and brantas sand in the mixture asphalt concrete with the addition of levels of 5%, 10%, and 15%. From the results of the study obtained the value of adding dolomite powder with levels of 5%, 10%, 15% at VIM values of 11.99%, 15.28%, 10.29 , VMA value of 26.30%, 29.05%,  24.88%,  VFB  value  of  54.49%,  48.33%,  58.81%,  stability  value  of  3402.503  kg, 3294.030 kg, 1958.946 kg, MQ value 733,8130 kg, 456,1891 kg, 471,9089 kg and from the testing chart the optimum content is at levels 5.5% to 8% and the maximum level is at 5% level.Aspal  Beton  (Hotmix)  adalah  campuran  agregat  kasar,  agregat  halus,  dan  bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diteliti dan diatur oleh spesifikasi teknis. Pada penelitian ini, campuran aspal beton diberi bahan tambahan serbuk dolomite sebagai campuran pada filler agar menjadi bahan alternativ campuran filler semen portaland untuk meminimalisir harga semen portaland yang  semakin  mahal  dan  pasir  brantas  sebagai  agregat  halus  untuk  mempelajari  dan mengetahui pengaruh serbuk dolomit dan pasir brantas pada campuran aspal beton dengan penambahan kadar 5%, 10%, dan 15%.dari hasil penelitian didapat nilai penambahan serbuk dolomite dengan kadar  5%, 10%, 15% pada nilai VIM sebesar 11,99%, 15,28%, 10,29, nilai VMA 26,30%, 29,05%, 24,88%, nilai VFB 54,49%, 48,33%, 58,81%, nilai stabilitas 3402,503 kg, 3294,030 kg, 1958,946 kg, nilai MQ 733,8130 kg, 456,1891 kg, 471,9089 kg dan dari grafik pengujian kadar optimum pada kadar 5,5% sampai 8% dan kadar maximum pada kadar 5%.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Jie Ji ◽  
Peng Zhai ◽  
Wenhua Zheng ◽  
Zhi Suo ◽  
Ying Xu

This study evaluated the effects of coarse aggregate angularity (CAA) on the performances of warm mix asphalt (WMA) because previous studies have predominantly focused on the effects of CAA on the hot mix asphalt (HMA) performances. Five different CAAs were fabricated using Los Angeles abrasion test, and the digital image processing method was used to identify the CAA. Five mixes with different combinations of CAA and Sasobit-modified asphalt binder were prepared according to the Marshall mix design procedure. The performances such as the resistance to rutting and thermal cracking, moisture susceptibility, and volumetric characteristics of WMA were evaluated. The test results indicated that the CAA value was linearly declined with the abrasive wearing passes increased. Higher CAA value improved the potential to resistance to rutting of WMA but was not suitable to enhance the resistance to thermal cracking of WMA due to sharp corners that caused higher stress concentration. In addition, WMA was more prone to develop numerous macrocracking, which resulted in lower moisture susceptibility due to higher CAA value inducing higher air void, VMA, and VCA of WMA.


2019 ◽  
Vol 2 (1) ◽  
pp. 154
Author(s):  
Supriadi Supriadi ◽  
Yosef Cahyo ◽  
Ahmad Ridwan ◽  
Agata Iwan Candra

Asphalt Concrete (Hotmix) is a mixture of coarse aggregate, fine aggregate and filler (Filler) with asphalt binder in high temperature conditions with the composition studied and regulated by technical specifications. In this study, asphalt concrete mixtures were given materials additional padas. This addition was carried out to study and determine the effect of padas on the asphalt concrete mixture with the addition of 5%, 10%, and 15%. Compressive strength specimens in the form of cylinders with a diameter of 10.09 cm and an average height of 7.8 cm. Testing is done after 2 days. Asphalt with the addition of 5% padas is better able to produce a better value of stability than others. The addition of padas rock produced a strong stability of 5% at 888.0747 kg, 10% at 598,199 kg, 15% at 441,6391 kg. To reach the optimum level, the mixture on concrete asphalt ranges < 5%Aspal Beton (Hotmix) adalah campuran agregat kasar, agregat halus, dan bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diteliti dan diatur oleh spesifikasi teknis.. Pada penelitian ini, campuran aspal beton diberi bahan tambahan batu padas. Penambahan ini dilakukan untuk mempelajari dan mengetahui pengaruh batu padas pada campuran aspal beton dengan penambahan 5%, 10%, dan 15%. Benda uji kuat tekan berupa silinder dengan diameter 10,09 cm dan  tinggi rata rata 7,8 cm. Pengujian dilakukan setelah 2 hari. Aspal dengan  penambahan batu padas 5% lebih mampu menghasilkan  nilai stabilitas yang lebih baik dari pada yang lainya. Penambahan batu padas menghasilakan  kuat stabilitas masing masing yaitu 5% sebesar 888.0747 kg, 10% sebesar 598.199 kg, 15% sebesar 441.6391 kg. Untuk mencapai kadar optimum maka campuran padas pada aspal beton berkisar antara < 5%


Sign in / Sign up

Export Citation Format

Share Document