scholarly journals PENELITIAN PENAMBAHAN BAHAN BATU PADAS PADA CAMPURAN ASPAL BETON

2019 ◽  
Vol 2 (1) ◽  
pp. 154
Author(s):  
Supriadi Supriadi ◽  
Yosef Cahyo ◽  
Ahmad Ridwan ◽  
Agata Iwan Candra

Asphalt Concrete (Hotmix) is a mixture of coarse aggregate, fine aggregate and filler (Filler) with asphalt binder in high temperature conditions with the composition studied and regulated by technical specifications. In this study, asphalt concrete mixtures were given materials additional padas. This addition was carried out to study and determine the effect of padas on the asphalt concrete mixture with the addition of 5%, 10%, and 15%. Compressive strength specimens in the form of cylinders with a diameter of 10.09 cm and an average height of 7.8 cm. Testing is done after 2 days. Asphalt with the addition of 5% padas is better able to produce a better value of stability than others. The addition of padas rock produced a strong stability of 5% at 888.0747 kg, 10% at 598,199 kg, 15% at 441,6391 kg. To reach the optimum level, the mixture on concrete asphalt ranges < 5%Aspal Beton (Hotmix) adalah campuran agregat kasar, agregat halus, dan bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diteliti dan diatur oleh spesifikasi teknis.. Pada penelitian ini, campuran aspal beton diberi bahan tambahan batu padas. Penambahan ini dilakukan untuk mempelajari dan mengetahui pengaruh batu padas pada campuran aspal beton dengan penambahan 5%, 10%, dan 15%. Benda uji kuat tekan berupa silinder dengan diameter 10,09 cm dan  tinggi rata rata 7,8 cm. Pengujian dilakukan setelah 2 hari. Aspal dengan  penambahan batu padas 5% lebih mampu menghasilkan  nilai stabilitas yang lebih baik dari pada yang lainya. Penambahan batu padas menghasilakan  kuat stabilitas masing masing yaitu 5% sebesar 888.0747 kg, 10% sebesar 598.199 kg, 15% sebesar 441.6391 kg. Untuk mencapai kadar optimum maka campuran padas pada aspal beton berkisar antara < 5%

2019 ◽  
Vol 2 (2) ◽  
pp. 214
Author(s):  
Faisal Abdul Yusuf ◽  
Ahmad Ridwan ◽  
Yosef Cahyo Setianto Poernomo

Asphalt Concrete (Hotmix) is a mixture of coarse aggregate, fine aggregate, and filler (filler) with asphalt binder in high-temperature conditions (heat) with a composition that is examined and regulated by technical specifications. In this research, concrete asphalt mixture was added with dolomite powder as a  mixture in filler to be an alternative material for portland cement filler mixture to minimize the price of portal and cement, which is increasingly expensive, and brantas sand as fine aggregate to study and determine the effect of dolomite powder and brantas sand in the mixture asphalt concrete with the addition of levels of 5%, 10%, and 15%. From the results of the study obtained the value of adding dolomite powder with levels of 5%, 10%, 15% at VIM values of 11.99%, 15.28%, 10.29 , VMA value of 26.30%, 29.05%,  24.88%,  VFB  value  of  54.49%,  48.33%,  58.81%,  stability  value  of  3402.503  kg, 3294.030 kg, 1958.946 kg, MQ value 733,8130 kg, 456,1891 kg, 471,9089 kg and from the testing chart the optimum content is at levels 5.5% to 8% and the maximum level is at 5% level.Aspal  Beton  (Hotmix)  adalah  campuran  agregat  kasar,  agregat  halus,  dan  bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diteliti dan diatur oleh spesifikasi teknis. Pada penelitian ini, campuran aspal beton diberi bahan tambahan serbuk dolomite sebagai campuran pada filler agar menjadi bahan alternativ campuran filler semen portaland untuk meminimalisir harga semen portaland yang  semakin  mahal  dan  pasir  brantas  sebagai  agregat  halus  untuk  mempelajari  dan mengetahui pengaruh serbuk dolomit dan pasir brantas pada campuran aspal beton dengan penambahan kadar 5%, 10%, dan 15%.dari hasil penelitian didapat nilai penambahan serbuk dolomite dengan kadar  5%, 10%, 15% pada nilai VIM sebesar 11,99%, 15,28%, 10,29, nilai VMA 26,30%, 29,05%, 24,88%, nilai VFB 54,49%, 48,33%, 58,81%, nilai stabilitas 3402,503 kg, 3294,030 kg, 1958,946 kg, nilai MQ 733,8130 kg, 456,1891 kg, 471,9089 kg dan dari grafik pengujian kadar optimum pada kadar 5,5% sampai 8% dan kadar maximum pada kadar 5%.


Author(s):  
Lucas Henrique Vieira ◽  
Thiago Delgado de Souza ◽  
Alexis Jair Enríquez-León ◽  
Francisco Thiago Sacramento Aragão ◽  
Otávio da Fonseca Martins Gomes ◽  
...  

The fine aggregate matrix (FAM) is an important constituent of an asphalt concrete mixture; the FAM is where some key damage phenomena such as cracking start and propagate. The proper design and fabrication of isolated FAM testing samples that are representative of the material existing within asphalt concrete mixtures requires the objective determination of key characteristics such as the apparent film thickness (FT) of the asphalt binder and the specific surface area of the aggregates. These relevant parameters facilitate the estimation of the binder content. This study presents an experimental testing and analysis protocol to determine the apparent FT that covers particles of fine aggregate in FAM mixtures. The method is based on tests using a scanning electron microscope and a digital image analysis procedure using the open-source Fiji/ImageJ software. The results indicated that apparent FT ranged between 0.5 µm and 30 µm. An additional validation effort was pursued and demonstrated the applicability of the proposed methodology, which can provide meaningful information to improve volumetric-based FAM mix design methods and generate materials that are more representative of those existing in the asphalt concrete mixtures.


Author(s):  
H. Haris

In the current era of globalization, the development of concrete in the construction sector is very rapid, be it housing, offices, bridges, roads, dams, ports, and others. That is inseparable from the use of concrete as a part of building construction. The use of coarse aggregate for concrete mixes, namely natural stone, is a non-renewable natural resource. Therefore an alternative is needed as a substitute. One of the natural resources that can be renewed is hazelnut skin. Candlenut is a traditional plant that has various benefits, one of which is a candlenut shell. In this study, the materials used for standard concrete mixtures consist of water, cement, fine aggregate, and coarse aggregate. The water used for mixing the concrete is taken from the PDAM channel. The results showed that the effect of candlenut shells used as a substitute for some coarse aggregate decreased compressive strength results from the results of standard concrete compressive strength. The results obtained by the value of standard concrete compressive strength at 28 days of concrete were 27.19Mpa for concrete using Candlenut shells of 20% produce a compressive strength value of 17.33 Mpa at 28 days of concrete. 35% produce a concrete compressive strength value of 16.04 Mpa, while 50% produce a concrete compressive strength value of 15.17 Mpa. Thus the research shows that more and more candlenut shells are being used as a substitute for coarse aggregate in the concrete mixture.


2019 ◽  
Vol 2 (2) ◽  
pp. 256
Author(s):  
Satria Arung Bangun Samodera ◽  
Yosef Cahyo Setianto Poernomo ◽  
Ahmad Ridwan ◽  
Agata Iwan Candra

Asphalt Concrete is a mixture of coarse aggregate, fine aggregate, and filler (Filler) with asphalt binder in high-temperature conditions with the composition regulated. This study uses three types of additions samples of red brick powder on concrete asphalt with a mixture of 5%,10%, and 20%. Each test results decreased with the addition of red brick powder among others 5% of 289,992 kg, 10% of 2248,822 kg, 20% of 1574,782,and produce volume of air cavity to mixture (VIM) with a level of 5%,10%,20% wich are among others 8,481%, 9,444%, 8,334%, and produce pore volume between aggregate (VMA) and levels of 5%,10%,20%,which are among others 22,575%, 23,390%, 22,450%, and produce pore volume between aggregate grains filled with asphalt (VFB) with levels of 5%,10%,20%, among others 62,575%, 59,903%, 62,897%, and produced a marshal question (MQ) with a 5% content of 942 kg/mm, 10% at 632 kg/mm, 20% at 378 kg/mm. To achieve optimum levels, the mixture of red brick powder on asphalt concrete ranges < 5%.Aspal Beton merupakan campuran agregat kasar, agregat halus, dan bahan pengisi (Filler) dengan bahan pengikat aspal dalam kondisi suhu tinggi (panas) dengan komposisi yang diatur. Penelitian ini mengunakan tiga jenis sampel penambahan serbuk batu bata merah pada aspal beton dengan campuran 5%,10%,dan 20%.Hasil pengujian masing masing mengalami penurunan dengan penambahan serbuk batu bata merah yaitu antara lain 5% sebesar 289,992 kg,10% sebesar 2248,822 kg,20% sebesar 1574,782,dan menghasilkan volume rongga udara terhadap campuran (VIM) dengan kadar 5%,10%,20% yaitu antara lain 8,481%,9,444%,8,334%,dan menghasilkan volume pori antara butir agregat (VMA) dengan kadar 5%,10%,20% yaitu antara lain 22,575%,23,390%,22,450%,dan menghasilkan volume pori agregat yang terisi aspal (VFB) dengan kadar 5%,10%,20% yaitu antara lain 62,575%,59,903%,62,897%,dan menghasilkan marshal quotient (QM) dengan kadar 5% sebesar 942 kg/mm,10% sebesar 632 kg/mm,dan 20% sebesar 378%. Untuk mencapai kadar optimum maka campuran serbuk batu bata merah pada aspal beton berkisar antara < 5%


2019 ◽  
Vol 5 (5) ◽  
pp. 1105-1118
Author(s):  
Hesham A. Numan ◽  
Mohammed Hazim Yaseen ◽  
Hussein A. M. S. Al-Juboori

This paper presents the behavior of concrete properties by replacing the conventional coarse aggregate used in the concrete mixture by two types of lightweight aggregate; Expanded Perlite Aggregate (EPA) and Volcanic Pumice (VP). To fulfill this aim; three laboratory tests were applied; density, compressive strength, and abrasion resistance, that conducted to extrapolate the range of the changes in the properties of concrete with existence those types of aggregate in the mixture. Also, the volumetric proportion adopted as a strategy for replacing the coarse aggregate by EPA or VP in the concrete mixture. Then, the volumetric proportion ranged from 10% to 50% with the variation step was 10%. Therefore, ten concrete mixtures are prepared and divided into two groups; each group contains five concrete mixes to represent the volumetric replacement (10-50)% of conventional coarse aggregate by EPA or VP. On the other hand, one extra mixture designed by using conventional aggregate (coarse and fine aggregate) without any inclusion of EPA or VP to be considered as a reference mixture. The obtained laboratory results of this study proved that the density, compressive strength, and abrasion resistance readings of concrete decreased at any volumetric proportion replacement of coarse aggregate by EPA or VP. The decrease in density and compressive strength of concrete readings amounted the peak level at 50% replacing of coarse aggregate by EPA, which were 38.19% and 77.37%, respectively than the reference mixture. Additionally, the compressive strength is an important factor affecting the abrasion resistance of concrete mixture, and loss of abrasion decreased as compressive strength increased.


Author(s):  
Nandy Candra ◽  
Whendy Trissan

Plastic bottle is waste that can be utilized. This research is used as additive in concrete mixtures can provide an alternative to Utilize the waste. Such as waste plastic bottles PET (Polyethylene Terephthalate). Optimizing the utilization of waste plastic bottles PET (Polyethylene Terephthalate) is expected to reduce the waste that pollutes the environment and provide added value.The fiber to be used as an additive in concrete mixtures. The fibers are mixed with fine aggregate, water and PPC cement type I gresik brands. Concrete mix design using SNI 03-2843-2000 about how making plans mixture of normal concrete. Tests using a cylinder measuring 10 cm x 20 cm, each variation using 10 samples consisting of five variations (0%, 5%, 10%, 15%, 20%) and tested at 14 and 28 days in Laboratory Studies Engineering Education building the Faculty of Education University of Palangkaraya.Average compressive strength at 14 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 23:02 MPa; 12:35 MPa; 10.49 MPa; 9.6 MPa; 8.83 MPa. Average compressive strength at 28 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 25.77 MPa; 13.62 MPa; 11.84 MPa; 10.8 MPa; 10:28 MPa


2020 ◽  
Vol 6 (12) ◽  
pp. 2416-2424
Author(s):  
Erniati Bachtiar ◽  
Mustaan Mustaan ◽  
Faris Jumawan ◽  
Meldawati Artayani ◽  
Tahang Tahang ◽  
...  

This study aims to examine the effect of recycled Polyethylene Terephthalate (PET) artificial aggregate as a substitute for coarse aggregate on the compressive strength and flexural strength, and the volume weight of the concrete. PET plastic waste is recycled by heating to a boiling point of approximately 300°C. There are five variations of concrete mixtures, defined the percentage of PET artificial aggregate to the total coarse aggregate, by 0, 25, 50, 75 and 100%. Tests carried out on fresh concrete mixtures are slump, bleeding, and segregation tests. Compressive and flexural strength tests proceeded based on ASTM 39/C39M-99 and ASTM C293-79 standards at the age of 28 days. The results showed that the use of PET artificial aggregate could improve the workability of the concrete mixture. The effect of PET artificial aggregate as a substitute for coarse aggregate on the compressive and flexural strength of concrete is considered very significant. The higher the percentage of PET plastic artificial aggregate, the lower the compressive and flexural strength, and the volume weight, of the concrete. Substitution of 25, 50, 75 and 100% of PET artificial aggregate gave decreases in compressive strength of 30.06, 32.39, 41.73 and 44.06% of the compressive strength of the standard concrete (18.20 MPa), respectively. The reductions in flexural strength were by respectively 19.03, 54.50, 53.95 and 61.00% of the standard concrete's flexural strength (3.59 MPa). The reductions in volume weight of concrete were by respectively 8.45, 17.71, 25.07 and 34.60% of the weight of the standard concrete volume of 2335.4 kg/m3 Doi: 10.28991/cej-2020-03091626 Full Text: PDF


UKaRsT ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Sugeng Dwi Hartantyo ◽  
Rasiyo Hepiyanto

Laston is a mixture of coarse aggregate, fine aggregate, and filler with a binder under the temperature of 145-155oC with the composition being studied and regulated by technical specifications. Laston is also known as AC (Asphalt Concrete).Laston itself is commonly used in Indonesia with continuous gradations used for heavy traffic loads. To get the addictive material is not easy and the material is expensive. Therefore, it is necessary to find alternatives to the cellulose fiber. Water hyacinth is a water weed that once grow and develop, it has high cellulose fiber content, which is about 60%.For that, done a research to add a hot asphalt mixture material that aims to improve the quality of mixed result. The selected material is natural water hyacinth. The method used is trial and error with reference of SNI 03-1737-1989. Variations used are 3%, 5%, and 7% of the asphalt weight, asphalt level used Is 5.61%.The result of this study is Marshall evaluation where the greatest score obtained for stability is 1325 kg,  Flow is 3.73 mm, Quotient Marshall is 401.02 kg/mm, VMA is 66.30%, VFWA is 19.25%, and VIM score is 54.35 %. With this result, the asphalt mixture can not be used because the results of VMA, VFWA, and VIM have not been suitable on specification of SNI 03-1737-1989.  Keywords: Laston, Asphalt Concrete, Water Hyacinth, SNI 03-1737-1989.


2020 ◽  
Vol 5 (2) ◽  
pp. 59-71
Author(s):  
Sri Devi Nilawardani

Title: The Effect of Using Mediteran Soil as Cement Substitution Materials in Compressive Strength and Tensile Strength of Concrete Concrete is a composite material (mixture) of cement, fine aggregate, coarse aggregate, and water. The potential of limestone in Indonesia is very large, reaching 28.678 billion tons which is the main ingredient in the cement manufacture. In the long run it will be depleted because it is a non-renewable natural resources. So to reduce the use of limestone the utilization of Mediteran soil as a substitution for some cement in the manufacture of concrete is required. The initial idea is based on the chemical composition contained in the Mediteran soil almost identical to the cement, which is carbonate (CaO) and silica (SiO2). The purpose of this research is to reveal the influence of substitution of Mediteran soil by 20% and 40% in the compressive strength and tensile of the concrete at age 3, 7, 14, and 28 days with the number of test specimen each 3 pieces on each variation in 10cm x20cm cylinder with planning of concrete mixture refers to SK SNI method T-15-1900-03. The type of research used is quantitative with the experimental method of laboratory test and data analysis of comparative method and regression. The results show that compressive strength and tensile strength of concrete using Mediteran soil substitution comparable to  the strength of normal concrete with dry treatment. In the composition of 20% Mediteran soils decreased by 51.35% or 7.9 MPa (compressive strength) and 30.60% or 0.93 MPa (tensile strength). While the composition of 40% Mediteran soil decreased by 43.78% or 9.13 MPa (compressive strength) and 2.24% or 1.31 MPa (tensile strength).  


Author(s):  
Hasan M. Faisal ◽  
Zafrul Hakim Khan ◽  
Rafiqul Tarefder

Asphalt concrete (AC) consists of asphalt binder and aggregate. Aggregate consists of: coarse aggregate and fines. Asphalt binder creates a coating or film around the aggregate, which is defined as the binder phase of AC. Fines are believed to be trapped inside an asphalt film or mixed with asphalt binder, creating a composite material called mastic. Thus, AC has three phases: mastic, asphalt film binder, and coarse aggregate. All these phases play major roles in performance of AC. Researchers have performed various tests on asphalt binder at micro scale to understand the macro scale behavior of AC. However, test methods developed and performed on binders, to this day, are mostly rheological shear and bending beam tests. No studies have been conducted on the compression stiffness or modulus and hardness of and binder, rather than shear and binders stiffness. In addition, the existing tests used in the asphalt area cannot be performed on binder and mastic while they are an integral part of AC. Nanoindentation tests can be performed on aggregate and asphalt binder while they are integral parts of AC. Because, in nanoindentation test, a nanometer size tip, which is smaller than binder film thickness as well as other phases. In the study, Performance Grade (PG) 64–28 was used for the study, same binder had been used afterwards to characterize asphalt and AC. A loading rate of 0.005 mN/sec, a dwell time of 200 sec and a maximum load 0.055 mN were employed in the study. In the current study 20 indentations were done on the asphalt binder sample and 100 indentations were done on AC sample, due to heterogeneity of the sample. However, to identify a specific phase in AC sample, the current study adopts the depth range technique for as same loading protocol. The depth rage of binder phase was acquired by independent indentation on same asphalt binder sample. As, asphalt is known to be a viscoelastic material that exhibits creep behavior, the creep compliance of asphalt binder was used for validation of the depth range assumption. The validation of phase identification was done by comparing the asphalt binder phase creep response while they are integral part of AC with creep response of independent asphalt binder sample under nanoindenter. The comparison shows depth resolution technique can successfully identify the binder phase of AC.


Sign in / Sign up

Export Citation Format

Share Document