Radiological characterization of natural building materials from the Campania region (Southern Italy)

2021 ◽  
Vol 268 ◽  
pp. 121087
Author(s):  
C. Sabbarese ◽  
F. Ambrosino ◽  
A. D'Onofrio ◽  
V. Roca
2018 ◽  
Vol 18 (11) ◽  
pp. 3019-3035 ◽  
Author(s):  
Marco Uzielli ◽  
Guido Rianna ◽  
Fabio Ciervo ◽  
Paola Mercogliano ◽  
Unni K. Eidsvig

Abstract. In recent years, flow-like landslides have extensively affected pyroclastic covers in the Campania region in southern Italy, causing human suffering and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future variations in event occurrences due to expected climate changes is crucial. The study assesses the temporal variation in flow-like landslide hazard for a section of the A3 “Salerno–Napoli” motorway, which runs across the toe of the Monte Albino relief in the Nocera Inferiore municipality. Hazard is estimated spatially depending on (1) the likelihood of rainfall-induced event occurrence within the study area and (2) the probability that the any specific location in the study area will be affected during the runout. The probability of occurrence of an event is calculated through the application of Bayesian theory. Temporal variations due to climate change are estimated up to the year 2100 through an ensemble of high-resolution climate projections, accounting for current uncertainties in the characterization of variations in rainfall patterns. Reach probability, or defining the probability that a given spatial location is affected by flow-like landslides, is calculated spatially based on a distributed empirical model. The outputs of the study predict substantial increases in occurrence probability over time for two different scenarios of future socioeconomic growth and atmospheric concentration of greenhouse gases.


2016 ◽  
Author(s):  
Jessica Bellanova ◽  
Giuseppe Calamita ◽  
Alessandro Giocoli ◽  
Raffaele Luongo ◽  
Angela Perrone ◽  
...  

Abstract. This paper reports the results of a geoelectrical survey carried out to investigate the Montaguto earth-flow, located in the southern Apennines (Campania Region, southern Italy). The aim of the survey was to reconstruct the geometry of the landslide body, to improve the knowledge on the geological setting and to indirectly test the effectiveness of a drainage system. Although electrical resistivity contrasts in the electrical images were not very pronounced, due to the lithological characteristic of the outcropping lithotypes, it was possible to observe the presence of both lateral and vertical discontinuities that were associated with lithological boundaries, physical variation of the same material and sliding surfaces. The geoelectrical information obtained was provided to the Italian National Civil Protection Department technicians and was considered for the planning of more appropriate actions for the stabilization and safety of the slide.


2010 ◽  
Vol 61 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Simona Palomba ◽  
Giuseppe Blaiotta ◽  
Valeria Ventorino ◽  
Alessandro Saccone ◽  
Olimpia Pepe

2019 ◽  
Vol 138 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Concetta Rispoli ◽  
Lorenzo Fedele ◽  
Claudia Di Benedetto ◽  
Renata Esposito ◽  
Sossio F. Graziano ◽  
...  

2013 ◽  
Vol 90 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Giuseppina Lacerra ◽  
Romeo Prezioso ◽  
Gennaro Musollino ◽  
Giulio Piluso ◽  
Lucia Mastrullo ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2967
Author(s):  
Seunghoon Choi ◽  
Sungjin Park ◽  
Minjoo Park ◽  
Yerin Kim ◽  
Kwang Min Lee ◽  
...  

Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4–10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20–60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4–0.6 mm width.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


Sign in / Sign up

Export Citation Format

Share Document