scholarly journals Application of Waste Engine Oil for Improving Ilmenite Flotation Combined with Sodium Oleate Collector

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1242
Author(s):  
Qingyao Yu ◽  
Fuqiang Tian ◽  
Yijun Cao ◽  
Guixia Fan ◽  
Haiqing Hao ◽  
...  

Collectors commonly have synergetic effects in ores flotation. In this work, a waste engine oil (WEO) was introduced as a collector to an ilmenite flotation system with sodium oleate (NaOL). The results show that the floatability of ilmenite was significantly improved by using WEO and NaOL as a combined collector. The recovery of ilmenite was enhanced from 71.26% (only NaOL) to 93.89% (WEO/NaOL combined collector) at the pH of 6.72. The optimum molar ratio of NaOL to WEO was about 2.08 to 1. The WEO and NaOL also have synergetic effects for the collection of ilmenite, because to obtain the ilmenite recovery of 53.96%, the dosage of 45 mg/L NaOL is equal to 38.56 mg/L WEO/NaOL combined collector (30 mg/L NaOL + 8.56 mg/L WEO). In other words, 15 mg/L of NaOL can be replaced by 8.56 mg/L of WEO. It is an effective way to reduce the dosage of the collector and reuse WEO. Therefore, it is a highly valuable and environmentally friendly approach for WEO reuse. WEO mainly consists of oxygen functional groups, aromatics, and long-chain hydrocarbons, especially for the RCONH2 and RCOOH, thereby forming a strong interaction on the ilmenite surface. The adsorption mechanism of waste engine oil and sodium oleate on the ilmenite surface is mainly contributed by chemical adsorption. Therefore, WEO exhibits superior synergistic power with NaOL as a combined collector. Herein, this work provided an effective collector for ilmenite flotation and a feasible approach for reducing NaOL dosage and recycling WEO.

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.


2021 ◽  
Vol 313 ◽  
pp. 125411
Author(s):  
Anqi Chen ◽  
Ziang Hu ◽  
Mingliang Li ◽  
Tao Bai ◽  
Guangjian Xie ◽  
...  

2018 ◽  
Vol 8 (7) ◽  
pp. 1194 ◽  
Author(s):  
Touqeer Shoukat ◽  
Pyeong Jun Yoo

The pavement structure tends to shrink under low temperature conditions and cracks will appear upon crossing threshold binder stiffness. Decreasing the binder viscosity at such low temperatures, by introducing additional oil fraction (aromatics and saturates) in asphalt colloidal systems, may result in improved resistance to thermal cracking. A single multi-grade engine oil (5W30) was used in this study to analyze the rheological properties imparted to binders. Rotational Viscosity (RV) test revealed that after Rolling Thin Film Oven (RTFO) aging, fresh oil and waste oil have a similar effect on decreasing the viscosity of binder and construction temperatures, reducing them by 5~8 °C. Fourier Transform Infrared Spectroscopy (FTIR) test results showed an abrupt increase of carbonyl concertation when fresh engine oil was used for rejuvenation while waste engine oil was less susceptible to oxidative aging. Dynamic analysis of modified binders proved that engine oil has better thermal cracking resistance but relaxation ability of binders and rutting resistance was impaired. Filtered waste engine oil resulted in a 35% decrement in the stiffness of binder compared to virgin asphalt after short term aging but upper Performance Grade (PG) was compromised by 1~3 °C with 2.5% oil inclusion. Unfiltered waste engine oil proved to have the least overall performance compared to fresh and filtered waste engine oil.


2017 ◽  
Vol 166 ◽  
pp. 1010-1019 ◽  
Author(s):  
Navid Zandi-Atashbar ◽  
Ali Asghar Ensafi ◽  
Amir Hooshmand Ahoor

Author(s):  
Ishaq Yahaya Lawan ◽  
Fatima Khalil Abdullah ◽  
Sani Idris ◽  
Shinggu D. Yamta ◽  
Abdurrahman Hudu

This research discusses a detail optimization of Eucalyptus camaldulensis seeds extract as corrosion inhibitor for aluminum coupons in HCl using weight loss measurement and kinetic study. The result shows that the maximum inhibitor efficiency was obtained at a concentration of 2.0 (%W/V). However the highest inhibitor efficiency of 85% was obtained at 50ºC and the least inhibitor efficiency of 29% was obtained at 30ºC. Thermodynamic consideration revealed that adsorption of inhibitor of aluminum surface was exothermic and consistent with chemical adsorption mechanism.


Sign in / Sign up

Export Citation Format

Share Document