Polymer modified concrete impact on the durability of infrastructure exposed to chloride environments

2022 ◽  
Vol 317 ◽  
pp. 125771
Author(s):  
Hazha Mohammed ◽  
Francesca Giuntini ◽  
Monower Sadique ◽  
Andy Shaw ◽  
Ana Bras
2011 ◽  
Vol 466 ◽  
pp. 131-139 ◽  
Author(s):  
Deon Kruger ◽  
Michael van der Westhuizen

Certain construction situations call for the use of ultra-lightweight concrete materials. The properties of such materials allow for the utilisation of concrete in weight critical applications, for example precast elements, roofing panels, flooring and cladding of structures. The weight saving benefits of lightweight concrete are evident, yet a trade-off in the strength and durability characteristics of the concrete are made. This paper sets out to develop an ultra-lightweight thin filmed polymer modified concrete material for such applications. This material may incorporate specialised aggregates and admixtures to meet performance requirements but the effects of these on the performance of the lightweight concrete are to be carefully evaluated. This paper presents some of the results obtained by means of laboratory testing as well in-situ testing. As part of the in-situ testing, the paper also reports on the practical evaluation of the ultra-lightweight material characteristics performed through the construction of a light weight concrete racing canoe. This allowed for the evaluation of the material performance characteristics and the establishment of acceptable work and application methods when constructing with this material.


2018 ◽  
Vol 199 ◽  
pp. 01006 ◽  
Author(s):  
Lech Czarnecki

In less than one century concrete has become the most widely used construction material over the world. In less than half of century it is difficult to imagine a concrete totally without polymers. An implantation of polymers into concrete has taken effect in the form of Concrete Polymer Composite: C-PC. Since then (1975) the development of new concrete classes have been ongoing: C-PC = PMC + PCC + PI + PC, where PMC Polymer Modified Concrete (polymer cont. < 1% concrete mass); PCC Polymer Cement Concrete (> 1% concrete mass); PIC Polymer Impregnated Concrete (3-8% concrete mass), PC Polymer Concrete (8-12% concrete mass). Over the time the role of polymers have been extended and it is covered by polymer with additional preposition: polymers on concrete (overlays, coatings, waterproofing and bounding materials). All those polymer composites have been found irreplaceable application in concrete repairing industry. It is enough to say that in ten parts of the European Standards, EN 1504, the category “polymer” can be found 73 times, and that is a proof of the big significance of this material in the repairs and protection of concrete. Just for comparison reason, the term “cement” appears only 59 times in all parts of the EN 1504. Indeed, if repaired concrete is higher class then repairing material should content more polymer. The justification belongs to the adhesion, which is a fundamental challenge for concrete repair. But also short time to exploitation readiness and many others polymer composites advantages are taken into consideration. In the paper the question: how polymers enhance concrete repair performance? is discussed. The repair rules and methods versus polymer repair materials will be considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yinchuan Guo ◽  
Aiqin Shen ◽  
Xiaohui Sun

The concrete roadside structures in Xinjiang, China, such as roadside barriers, bridge rails, and drainage holes, are severely damaged by the coupled effect of seasonal freeze-thaw cycles and deicer salts. To solve the corrosion problems of roadside structures, polymer-modified concrete was recommended for the future construction of roadside structures and polymer-modified cementitious coating was suggested for the protection of the current corroded ones. In this study, air-entraining agent and carboxylated styrene-butadiene latex were added for concrete modification and the corresponding performance tests were conducted. In addition, the performances of six types of readily available coating materials, including the acrylic latex modified cementitious coating designed in this study, were tested in freeze-thaw condition with the presence of chloride ions. The results show that 0.013% of the air-entraining agent and 10% of the carboxylated styrene-butadiene latex were appropriate dosage rates for the modification of Portland cement concrete, in terms of the improvement of the freeze-thaw resistance, compressive strength, and chloride impermeability. For the protection of the current corroded roadside structures, the acrylic-modified cementitious coating material demonstrated a good performance and the field monitoring confirmed that the coating is suitable for the protection of the roadside structures in Xinjiang.


1995 ◽  
Vol 17 (2) ◽  
pp. 193
Author(s):  
RD Hooton ◽  
RP Bright ◽  
PL Fitzgerald ◽  
MJ O'Brien

2007 ◽  
Vol 348-349 ◽  
pp. 889-892 ◽  
Author(s):  
Yi Ping Liu ◽  
Li Qun Tang ◽  
Xiao Qing Huang

Damage behaviors of plain concrete (PC), steel fiber reinforced concrete (SFRC), steel fiber reinforced and polymer modified concrete (SFRPMC) are studied in this paper by use of a Split Hopkinson Pressure Bar (SHPB). Three kinds of concrete materials appear obvious strain rate strengthening effects. SFRPMC appears a better resistance and energy absorption ability. A rate-dependent damage model is suggested to depict the impact damage evolution of three kinds of materials under different impact velocities. The simulation results showed the theoretical model could well describe the dynamic behaviors of the three kinds of materials, and steel fibers attribute more to resist crack develop in early stage, “bridge effect” of steel fibers slow up the damage evolution in SFRC, with the addition of polymer, the internal structures of SFRPMC were modified, SFRPMC gains better ductility, and appears a kind of “softening effect”, which makes the damage in SFRPMC develop more slowly than that in PC and SFRC under impact loading.


Sign in / Sign up

Export Citation Format

Share Document