Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidization and Mg treatment

2021 ◽  
pp. 110006
Author(s):  
Hu Xiao ◽  
Feng Huang ◽  
Zhixian Peng ◽  
Lixia Fan ◽  
Jing Liu
2012 ◽  
Vol 49 (8) ◽  
pp. 468-479 ◽  
Author(s):  
P. Grad ◽  
B. Reuscher ◽  
A. Brodyanski ◽  
M. Kopnarski ◽  
E. Kerscher

Author(s):  
Waris N Khan ◽  
Rahul Chhibber

This work investigates the microstructure and mechanical properties of 2507 super duplex stainless steel and API X70 high strength low alloy steel weld joint. This joint finds application in offshore hydrocarbon drilling riser and oil–gas pipelines. Coated shielded metal arc welding electrodes have been designed and extruded on 309L filler and their performance compared with a commercial austenitic electrode E309L. Filler 309L solidifies in ferrite-austenite (F-A) mode with a resultant microstructure comprising skeletal ferrites with austenite distributed in the interdendritic region. Results of tensile and impact tests indicate that weld fabricated with laboratory-developed electrodes has higher ductility and impact energy than the commercial electrode. The tensile strength and weld hardness of commercial electrodes are superior. The laboratory-made electrode’s microhardness is lower than the commercial electrodes, making the former less prone to failure. An alternative welding electrode coating composition has been suggested through this work and found to be performing satisfactorily and comparable to the commercially available electrodes.


2018 ◽  
Vol 72 (2) ◽  
pp. 439-454 ◽  
Author(s):  
Satish Kumar Sharma ◽  
Sachin Maheshwari ◽  
Ratnesh Kumar Raj Singh

2021 ◽  
Vol 59 (01) ◽  
pp. 69-78
Author(s):  
A. BEGIC HADZIPASIC ◽  
J. MALINA ◽  
M. MALINA

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36876-36885 ◽  
Author(s):  
Bingying Wang ◽  
Yu Yin ◽  
Zhiwei Gao ◽  
Zhenbo Hou ◽  
Wenchun Jiang

A developed surface enhancement technique, USRP, was applied on X80 pipeline steel and the stress corrosion cracking susceptibility was studied.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1064 ◽  
Author(s):  
Víctor H. Vargas Cortés ◽  
Gerardo Altamirano Guerrero ◽  
Ignacio Mejía Granados ◽  
Víctor H. Baltazar Hernández ◽  
Cuauhtémoc Maldonado Zepeda

The combination of high strength and formability of transformation induced plasticity (TRIP) steels is interesting for the automotive industry. However, the poor weldability limits its industrial application. This paper shows the results of six low-alloy TRIP steels with different chemical composition which were studied in order to correlate retained austenite (RA) and non-metallic inclusions (NMI) with their resistance spot welded zones to their joints’ final mechanical properties. RA volume fractions were quantified by X-ray microdiffraction (µSXRD) while the magnetic saturation technique was used to quantify NMI contents. Microstructural characterization and NMI of the base metals and spot welds were assessed using scanning electron microscopy (SEM). Weld nuggets macrostructures were identified using optical microscopy (OM). The lap-shear tensile test was used to determine the final mechanical properties of the welded joints. It was found that NMI content in the fusion zone (FZ) was higher than those in the base metal and heat affected zone (HAZ). Whereas, traces of RA were found in the HAZ of highly alloyed TRIP steels. Lap-shear tensile test results showed that mechanical properties of spot welds were affected by NMI contents, but in a major way by the decomposition of RA in the FZ and HAZ.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2839
Author(s):  
Longfei Li ◽  
Bo Song ◽  
Biwen Yang ◽  
Lei Wang ◽  
Wensen Cheng

In this study, an optimum tempering temperature after a thermo-mechanical control process (TMCP) was proposed to improve the hydrogen-induced ductility loss of high-vanadium X80 pipeline steel. The results showed that with increasing tempering temperature from 450 to 650 °C, the size and quantity of granular bainite decreased but the spacing of deformed lath ferrite and the fraction of massive ferrite increased. The number of fine vanadium carbides increased as well. However, as the tempering temperature increased to 700 °C, the microstructure of T700 steel completely converted to massive ferrite and the grain size became larger. Additionally, the amount of nanoscale precipitates decreased again, and the mean size of precipitates evidently increased in T700 steel. The steel tempering at 650 °C, containing the most vanadium precipitates with a size less than 20 nm, had the lowest hydrogen diffusion coefficient and the best resistance to hydrogen-induced ductility loss.


Sign in / Sign up

Export Citation Format

Share Document