scholarly journals Effect of Retained Austenite and Non-Metallic Inclusions on the Mechanical Properties of Resistance Spot Welding Nuggets of Low-Alloy TRIP Steels

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1064 ◽  
Author(s):  
Víctor H. Vargas Cortés ◽  
Gerardo Altamirano Guerrero ◽  
Ignacio Mejía Granados ◽  
Víctor H. Baltazar Hernández ◽  
Cuauhtémoc Maldonado Zepeda

The combination of high strength and formability of transformation induced plasticity (TRIP) steels is interesting for the automotive industry. However, the poor weldability limits its industrial application. This paper shows the results of six low-alloy TRIP steels with different chemical composition which were studied in order to correlate retained austenite (RA) and non-metallic inclusions (NMI) with their resistance spot welded zones to their joints’ final mechanical properties. RA volume fractions were quantified by X-ray microdiffraction (µSXRD) while the magnetic saturation technique was used to quantify NMI contents. Microstructural characterization and NMI of the base metals and spot welds were assessed using scanning electron microscopy (SEM). Weld nuggets macrostructures were identified using optical microscopy (OM). The lap-shear tensile test was used to determine the final mechanical properties of the welded joints. It was found that NMI content in the fusion zone (FZ) was higher than those in the base metal and heat affected zone (HAZ). Whereas, traces of RA were found in the HAZ of highly alloyed TRIP steels. Lap-shear tensile test results showed that mechanical properties of spot welds were affected by NMI contents, but in a major way by the decomposition of RA in the FZ and HAZ.

2011 ◽  
Vol 51 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Sylvain Dancette ◽  
Veronique Massardier-Jourdan ◽  
Damien Fabrègue ◽  
Jacques Merlin ◽  
Thomas Dupuy ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 3531-3536
Author(s):  
Lucia Suarez ◽  
Josep Antonio Benito ◽  
Pablo Rodriguez-Calvillo ◽  
Daniel Casellas ◽  
Yvan Houbaert ◽  
...  

Low alloy transformation-induced plasticity aided (TRIP) steels have attracted much interest over the last years. TRIP steels were initially developed for automotive applications as they offer an excellent combination of strength and ductility at reasonable costs. These excellent mechanical properties mainly arise from a complex multiphase microstructure of a ferrite matrix and a dispersion of multiphase grains of bainite, martensite and metastable retained austenite. The relevant influence of microstructure on physical and mechanical properties makes metallographic study essential for an appropriate understanding and improvement of the mechanical behavior. An accurate microstructural characterization and quantification of the amount of the different constituents is indispensable to know how the stresses and strains are distributed within the different microstructural constituents. Among the different characterization methods commonly used electron backscatter diffraction (EBSD) appears to be the unique technique able to observe retained austenite grains often no larger than 1 μm. The present work shows the evolution of retained austenite while straining. Microstructural and textural evolution after different strains was examined by optical microscopy OM, EBSD and XRD techniques on TRIP800 steel. EBSD technique appears as a powerful tool for characterizing the complex multiphase steel microstructure and provides an accurate evaluation of the local crystallographic texture. It allows to measure orientation gradients within individual grains of each different phase. The distinction between some phases is observed.


2014 ◽  
Vol 922 ◽  
pp. 412-417 ◽  
Author(s):  
A. Laureys ◽  
Tom Depover ◽  
Roumen H. Petrov ◽  
Kim Verbeken

The present work evaluates hydrogen induced cracking in a high strength TRIP steel with a complex multiphase microstructure, containing ferrite, bainite, retained austenite, and some martensite. Each structural constituent demonstrates a different behavior in the presence of hydrogen and when deformed, the retained austenite transforms to martensite. The goal of this work is to understand the response of the hydrogen saturated multiphase structure to a mechanical load. A tensile test on notched samples combined with in-situ electrochemical hydrogen charging was carried out. The test was interrupted at certain specific points, before the macroscopic failure of the material. Hydrogen induced crack initiation and propagation were examined by studying several intermediate elongations. The microstructure of the samples was characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The EBSD measurements allowed both microstructural and crystallographic characterization of the hydrogen induced crack surroundings. A correlation was found between the occurrence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. These cracks were located at the surface in specific high stressed regions. Finite element simulations indicated that these regions were induced due to the presence of the notch.


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


2011 ◽  
Vol 239-242 ◽  
pp. 1092-1095
Author(s):  
Xu Tao Gao ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Ming Ming Zhang ◽  
Di Tang

By means of optical microscopy(OM), scanning electron microscopy(SEM),X-ray diffraction(XRD),And tensile test, Mechanical Properties of hot rolled transformation -induced plasticity (TRIP) steels which were prepared through three different coiling temperature was investigated. Result reveals that the formability index of the experimental steel descends when the coiling temperature becomes low. Different coiling temperature has greater impact on retained austenite. Amount and carbon content of retained austenite in the experimental steel get less with lower coiling temperature.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878528 ◽  
Author(s):  
Feng Chen ◽  
Shiding Sun ◽  
Zhenwu Ma ◽  
GQ Tong ◽  
Xiang Huang

We use tensile–shear tests to investigate the failure modes of Ti–1Al–1Mn microscale resistance spot welds and to determine how the failure mode affects the microstructure, microhardness profile, and mechanical performance. Two different failure modes were revealed: interfacial failure mode and pullout failure mode. The welds that fail by pullout failure mode have much better mechanical properties than those that fail by interfacial failure mode. The results show that weld nugget size is also a principal factor that determines the failure mode of microscale resistance spot welds. A minimum weld nugget size exists above which all specimens fail by pullout failure mode. However, the critical weld nugget sizes calculated using the existing recommendations are not consistent with the present experimental results. We propose instead a modified model based on distortion energy theory to ensure pullout failure. Calculating the critical weld nugget size using this model provides results that are consistent with the experimental data to high accuracy.


Sign in / Sign up

Export Citation Format

Share Document