scholarly journals A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software

2019 ◽  
Vol 237 ◽  
pp. 208-218 ◽  
Author(s):  
Craig Warren ◽  
Antonios Giannopoulos ◽  
Alan Gray ◽  
Iraklis Giannakis ◽  
Alan Patterson ◽  
...  
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1506 ◽  
Author(s):  
Alessandro Fedeli ◽  
Claudio Montecucco ◽  
Gian Luigi Gragnani

Electromagnetic scattering simulation is an extremely wide and interesting field, and its continuous evolution is associated with the development of computing resources. Undeniably, antenna design at all levels strongly relies on electromagnetic simulation software. However, despite the large number and the high quality of the available open-source simulation packages, most companies have no doubts about the choice of commercial program suites. At the same time, in the academic world, it is frequent to develop in-house simulation software, even from scratch and without proper knowledge of the existing possibilities. The rationale of the present paper is to review, from a practical viewpoint, the open-source software that can be useful in the antenna design process. To this end, an introductory overview of the usual design workflow is firstly presented. Subsequently, the strengths and weaknesses of open-source software compared to its commercial counterpart are analyzed. After that, the main open-source packages that are currently available online are briefly described. The last part of this paper is devoted to a preliminary numerical benchmark for the assessment of the capabilities and limitations of a subset of the presented open-source programs. The benchmark includes the calculation of some fundamental antenna parameters for four different typologies of radiating elements.


Author(s):  
Robin Lovelace

AbstractGeographic analysis has long supported transport plans that are appropriate to local contexts. Many incumbent ‘tools of the trade’ are proprietary and were developed to support growth in motor traffic, limiting their utility for transport planners who have been tasked with twenty-first century objectives such as enabling citizen participation, reducing pollution, and increasing levels of physical activity by getting more people walking and cycling. Geographic techniques—such as route analysis, network editing, localised impact assessment and interactive map visualisation—have great potential to support modern transport planning priorities. The aim of this paper is to explore emerging open source tools for geographic analysis in transport planning, with reference to the literature and a review of open source tools that are already being used. A key finding is that a growing number of options exist, challenging the current landscape of proprietary tools. These can be classified as command-line interface, graphical user interface or web-based user interface tools and by the framework in which they were implemented, with numerous tools released as R, Python and JavaScript packages, and QGIS plugins. The review found a diverse and rapidly evolving ‘ecosystem’ tools, with 25 tools that were designed for geographic analysis to support transport planning outlined in terms of their popularity and functionality based on online documentation. They ranged in size from single-purpose tools such as the QGIS plugin AwaP to sophisticated stand-alone multi-modal traffic simulation software such as MATSim, SUMO and Veins. Building on their ability to re-use the most effective components from other open source projects, developers of open source transport planning tools can avoid ‘reinventing the wheel’ and focus on innovation, the ‘gamified’ A/B Street https://github.com/dabreegster/abstreet/#abstreet simulation software, based on OpenStreetMap, a case in point. The paper, the source code of which can be found at https://github.com/robinlovelace/open-gat, concludes that, although many of the tools reviewed are still evolving and further research is needed to understand their relative strengths and barriers to uptake, open source tools for geographic analysis in transport planning already hold great potential to help generate the strategic visions of change and evidence that is needed by transport planners in the twenty-first century.


Author(s):  
Eirik Keilegavlen ◽  
Runar Berge ◽  
Alessio Fumagalli ◽  
Michele Starnoni ◽  
Ivar Stefansson ◽  
...  

Abstract Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks, and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling, discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy, which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formulation of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by benchmarks for flow, poroelasticity, and fracture deformation in porous media. The flexibility of the framework is then illustrated by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be reproduced by openly available simulation scripts.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yi-fan Qian ◽  
Zhi-feng Ye ◽  
Hai-bo Zhang

With the development of electromagnetic simulation software and affordable hardware, it is allowed for us to complete simulations for EMC purposes. However, simulation demands will be immense when simulations for models with complex structures, especially aircraft components, have to be solved. Hence, it is meaningful to investigate how to minimize the computational demands. One of the solutions to reduce the simulation expense is the simplification for the simulated model. But the simplified model should be guaranteed to provide credible simulation results which do not deviate from the original model apparently. Generally, the difference between the simulation results and experimental data is estimated, or if the experimental conditions are not achieved, the comparison between the simplified model and the original one has to be analyzed, at least. This paper explores the electromagnetic simulation of a turbofan engine encountering lightning strike. With the simplifications of different components on the turbofan engine, the influences on induced currents of engine controller cables are simulated and analyzed based on the transmission-line matrix method. A combining method of components removal and geometric structure simplification is proposed to simplify the whole engine model. Simplified components include compressor, combustion chamber, turbine, and nozzle. The effects of different simplification methods are quantified, and the rationality of the simplified model is verified by simulation analysis.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 59 ◽  
Author(s):  
Lenka Kabošová ◽  
Stanislav Kmeť ◽  
Dušan Katunský

Over the past few decades, digital tools have become indispensable in the field of architecture. The complex design tasks that make up architectural design methods benefit from utilizing advanced simulation software and, consequently, design solutions have become more nature-adapted and site-specific. Computer simulations and performance-oriented design enable us to address global challenges, such as climate change, in the preliminary conceptual design phase. In this paper, an innovative architectural design method is introduced. This method consists of the following: (1) an analysis of the local microclimate, specifically the wind situation; (2) the parametric shape generation of the airport terminal incorporating wind as a form-finding factor; (3) Computational Fluid Dynamics (CFD) analysis; and (4) wind-performance studies of various shapes and designs. A combination of programs, such as Rhinoceros (Rhino), and open-source plug-ins, such as Grasshopper and Swift, along with the post-processing software Paraview, are utilized for the wind-performance evaluation of a case study airport terminal in Reykjavik, Iceland. The objective of this wind-performance evaluation is to enhance the local wind situation and, by employing the proposed architectural shape, to regulate the wind pattern to find the optimal wind flow around the designed building. By utilizing the aforementioned software, or other open-source software, the proposed method can be easily integrated into regular architectural practice.


2016 ◽  
Vol 12 (06) ◽  
pp. 4 ◽  
Author(s):  
Irfan Syamsuddin

The paper report the applicablity of open source simulation software called GreenCloud to assist a novel Problem Based Learning in a laboratory environment. The actual case of Indonesia government plan to deploy cloud based data center infrastructure was picked up as the actual case. In such case, cloud economics analysis is required along with technical one. An open source software called GreenCloud is suitebale to perform the simulation and analysis of cloud computing from economics perspective. It was applied into three models of cloud architecture namely Two-Tier, Three-Tier and Three-Tier High Speed and then analyzed in terms of their energy consumptions based on three options of cloud economics scheme, namely i) non energy savings, ii) Dynamics Voltage and Frequency Scaling (DVFS) and iii) Dynamics Shutdown (DNS).


2013 ◽  
Vol 427-429 ◽  
pp. 1293-1296
Author(s):  
Yan Zhong Yu ◽  
Ji Zhen Ni ◽  
Xian Hui Li

A printed inverted-F antenna for RFID tag at 5.8 GHz is designed in this paper. The antenna structure consists of an inverted-F patch, a substrate layer, and a ground plane. To reduce costs, the FR4 is selected as the material of substrate layer, which is used commonly in PCB (Printed Circuit Board). Its relative permittivity is 4.4 and a loss tangent is 0.02. The inverted-F patch and ground plane are laid on/under the substrate layer respectively. The designed antenna is modeled, simulated and optimized by using HFSS (high frequency electromagnetic simulation software). Simulation results demonstrate that the printed inverted-F antenna can satisfy the requirements of RFID Tag applications.


2012 ◽  
Vol 229-231 ◽  
pp. 1963-1966
Author(s):  
Zhi Yuan Cai ◽  
Zhan Nan Guo

CPS (control and protective switching) one of the smart integrated include the function of circuit breakers, contactors, and low-voltage electrical appliances. The contact system is different from the traditional low-voltage electrical function. Well-designed structure of the contact system has important practical significance for overall performance of CPS. The paper proposes a new contact system. The simulation analyze the electrical repulsion of the traditional contact system and a new contact system under different current size, breaking time, blowing arc magnetic field analysis by electromagnetic simulation software. According to the results of the simulation comparison, prove that the new contactor structure making the function of CPS increased.


Sign in / Sign up

Export Citation Format

Share Document