Conformers of dimers of carboxylic acids in the gas phase: A rotational study of difluoroacetic acid–formic acid

2014 ◽  
Vol 591 ◽  
pp. 301-305 ◽  
Author(s):  
Qian Gou ◽  
Gang Feng ◽  
Luca Evangelisti ◽  
Walther Caminati
2021 ◽  
Author(s):  
Javier Ivanez ◽  
Patricia Garcia-Munoz ◽  
Agnieszka M. Ruppert ◽  
Nicolas Keller

ChemSusChem ◽  
2021 ◽  
Author(s):  
Egor V. Fufachev ◽  
Bert M. Weckhuysen ◽  
Pieter C. A. Bruijnincx

2013 ◽  
Vol 464-465 ◽  
pp. 332-338 ◽  
Author(s):  
Sayoko Nagashima ◽  
Hitomi Yamazaki ◽  
Kentaro Kudo ◽  
Satoshi Kamiguchi ◽  
Teiji Chihara

Author(s):  
Okada Masaki ◽  
Katsuhiko Takeuchi ◽  
Kazuhiro Matsumoto ◽  
Tomoharu Oku ◽  
Jun-Chul Choi

Hydroxycarbonylation of alkenes using formic acid (HCOOH) is ideal for the synthesis of various carboxylic acids as a means to develop a sustainable reaction system with lower environmental impact. In...


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 430 ◽  
Author(s):  
Elnaz Bahadori ◽  
Antonio Tripodi ◽  
Alberto Villa ◽  
Carlo Pirola ◽  
Laura Prati ◽  
...  

The photoreduction of CO2 is an intriguing process which allows the synthesis of fuels and chemicals. One of the limitations for CO2 photoreduction in the liquid phase is its low solubility in water. This point has been here addressed by designing a fully innovative pressurized photoreactor, allowing operation up to 20 bar and applied to improve the productivity of this very challenging process. The photoreduction of CO2 in the liquid phase was performed using commercial TiO2 (Evonink P25), TiO2 obtained by flame spray pyrolysis (FSP) and gold doped P25 (0.2 wt% Au-P25) in the presence of Na2SO3 as hole scavenger (HS). The different reaction parameters (catalyst concentration, pH and amount of HS) have been addressed. The products in liquid phase were mainly formic acid and formaldehyde. Moreover, for longer reaction time and with total consumption of HS, gas phase products formed (H2 and CO) after accumulation of significant number of organic compounds in the liquid phase, due to their consecutive photoreforming. Enhanced CO2 solubility in water was achieved by adding a base (pH = 12–14). In basic environment, CO2 formed carbonates which further reduced to formaldehyde and formic acid and consequently formed CO/CO2 + H2 in the gas phase through photoreforming. The deposition of small Au nanoparticles (3–5 nm) (NPs) onto TiO2 was found to quantitatively influence the products distribution and increase the selectivity towards gas phase products. Significant energy storage in form of different products has been achieved with respect to literature results.


2010 ◽  
Vol 10 (2) ◽  
pp. 3937-3974 ◽  
Author(s):  
S. R. Tong ◽  
L. Y. Wu ◽  
M. F. Ge ◽  
W. G. Wang ◽  
Z. F. Pu

Abstract. A study of the atmospheric heterogeneous reactions of formic acid, acetic acid, and propionic acid on dust particles (α-Al2O3) was performed at ambient condition by using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor. From the analysis of the spectral features, observations of carboxylates formation provide strong evidence for an efficient reactive uptake process. Comparison of the calculated and experimental vibrational frequencies of adsorbed carboxylates establishes the bridging coordinated structures on the surface. The uptake coefficients of formic acid, acetic acid, and propionic acid on α-Al2O3 particles are (2.07±0.26)×10−3, (5.00±0.69)×10−3, and (3.04±0.63)×10−3, respectively (using geometric area). Besides, the effect of various relative humid (RH) on this heterogeneous reactions was studied. The uptake coefficients of monocarboxylic acids on α-Al2O3 particles increase initially (RH<20%) and then decrease with the increased RH (RH>20%) which was due to the effect of water on carboxylic acids solvation, particles surface hydroxylation, and competition on reactive site. On the basis of the results of experimental simulation, the mechanism of heterogeneous reaction of dust with carboxylic acids at ambient condition was discussed. The loss of atmospheric monocarboxylic acids due to reactive uptake on available mineral dust particles can be competitive with homogeneous loss pathways, especially in dusty urban and desertified environments.


2010 ◽  
Vol 10 (10) ◽  
pp. 24435-24497 ◽  
Author(s):  
F. Paulot ◽  
D. Wunch ◽  
J. D. Crounse ◽  
G. C. Toon ◽  
D. B. Millet ◽  
...  

Abstract. We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.


2018 ◽  
Vol 122 (4) ◽  
pp. 2064-2069 ◽  
Author(s):  
Beomgyun Jeong ◽  
Hongrae Jeon ◽  
Ryo Toyoshima ◽  
Ethan J. Crumlin ◽  
Hiroshi Kondoh ◽  
...  

1994 ◽  
Vol 358 ◽  
Author(s):  
Eric J. Lee ◽  
James S. Ha ◽  
Michael J. Sailor

ABSTRACTThe porous silicon (PS) surface is derivatized with ethanol, triethylsilanol and formic acid as well as oxidized with water. The two reactions used to prepare these surfaces are discussed, and FTIR spectra of the products are presented. Surface-modified PS retains 10-40% of its original photoluminescence. PS-derivatives display reversible luminescence quenching by gas phase water, ethanol, acetonitrile and benzene. The extent of quenching varies with different PS-derivatives depending on the interaction of the chemical vapor with the modified PS surfaces.


Sign in / Sign up

Export Citation Format

Share Document