scholarly journals The effect of polymer chain length on the mechanical properties of triblock copolymer gels

2014 ◽  
Vol 612 ◽  
pp. 157-161 ◽  
Author(s):  
Tanya L. Chantawansri ◽  
Timothy W. Sirk ◽  
Randy Mrozek ◽  
Joseph L. Lenhart ◽  
Martin Kröger ◽  
...  
Author(s):  
Kristin Holzworth ◽  
Gregory Williams ◽  
Bedri Arman ◽  
Zhibin Guan ◽  
Gaurav Arya ◽  
...  

The basis of this research is to mitigate shock through material design. In this work, we seek to develop an understanding of parametric variations in polyurea-based nano-composite materials through experimental characterization and computational modeling. Blast-mitigating applications often utilize polyurea due to its excellent thermo-mechanical properties. Polyurea is a microphase-separated segmented block copolymer formed by the rapid reaction of an isocyanate component and an amine component. Block copolymers exhibit unique properties as a result of their phase-separated morphology, which restricts dissimilar block components to microscopic length scales. The soft segments form a continuous matrix reinforced by the hard segments that are randomly dispersed as microdomains. The physical properties of the separate phases influence the overall properties of the polyurea. While polyurea offers a useful starting point, control over crystallite size and morphology is limited. For compositing, the blending approach allows superb control of particle size, shape, and density; however, the hard/soft interface is typically weak for simple blends. Here, we overcome this issue by developing hybrid polymer grafted nanoparticles, which have adjustable exposed functionality to control both their spatial distribution and interface. These nano-particles have tethered polymer chains that can interact with their surrounding environment and provide a method to control well defined and enhanced nano-composites. This approach allows us to adjust a number of variables related to the hybrid polymer grafted nanoparticles including: core size and shape, core material, polymer chain length, polymer chain density, and monomer type. In this work, we embark on a parametric study focusing on the effect of silica nanoparticle size, polymer chain length, and polymer chain density. Preliminary results from experimental characterization and computational modeling indicate that the dynamic mechanical properties of the material can be significantly altered through such parametric modifications. These efforts are part of an ongoing initiative to develop elastomeric composites with optimally designed compositions and characteristics to manage blast-induced stress-wave energy.


2021 ◽  
Vol 155 (3) ◽  
pp. 034701
Author(s):  
Emily Y. Lin ◽  
Amalie L. Frischknecht ◽  
Karen I. Winey ◽  
Robert A. Riggleman

Langmuir ◽  
2021 ◽  
Author(s):  
Hyeong Jin Kim ◽  
Wenjie Wang ◽  
Honghu Zhang ◽  
Guillaume Freychet ◽  
Benjamin M. Ocko ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1516
Author(s):  
Dongmei Liu ◽  
Kai Gong ◽  
Ye Lin ◽  
Tao Liu ◽  
Yu Liu ◽  
...  

We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Kenneth P. Mineart ◽  
Cameron Hong ◽  
Lucas A. Rankin

Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document